wjec cbac

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2016

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

	Additional Mathematics		Final
1	(a)(i)(7x +2)(3x - 2)	B2	B1 $(7x - 2)(3x + 2)$ or $7x(3x - 2) + 2(3x - 2)$ or $(x - \frac{2}{3})(21x + 6)$ or $(7x + 2)$ and/or $(3x - 2)$ ' or $(7x + 2) + (3x - 2)$ ' or equivalent
	(ii) -2/7 with 2/3 or -0.2857 or -0.286 with 0.666	B2	If a restart in (ii) to factorise, do not alter marking in (i), unless the candidate is clearly replacing their answer (i) Ignore sight of "=0" Must be from factorising. STRICT FT for their factors. B1 for each answer Do not accept from the use of the quadratic formula
	(b)(i) $(x + 6)^2 + \dots + 13$	B1 B1	Sight of $(x+6)^2$ or $(x + {}^{12}/_2)^2$ Ignore sight of '=0' Accept 49 - 36 if not evaluated, otherwise mark final value. Do not accept '= -13' or '=13' $(x + 6)^2 + 13$, B1, B1 ISW.
	Least value (+)13	B1	Must follow completing the square FT their value but not 49 or - 36
	(ii) (x =) -6	B1 8	FT from 'their $(x + 6)^{2}$ ' Do not accept (-6, 13)
2	(a) $36x^3 + 8x$ (+0)	B3	B1 for $36x^3$ (not $9 \times 4x^3$), B1 for $+8x$ (not $4 \times 2x$), and B1 for $+0$ (or blank) provided at least 1 other mark awarded. Mark final answer
	(b) -8x ⁻⁹	B1	
	(c) $\frac{3}{4} x^{-\frac{1}{4}}$	B1	
3		5 M1	Attempt to use common denominator, may be implied
			by sight of $35(3x) - 14(x-6) + 10(2x+3)$ without sight of /70 May be seen in stages
	$\{ 35(3x) - 14(x-6) + 10(2x+3) \}$ (/70)	B1	Or equivalent May be seen in stages, as intention of
	$\{105x-14x+84+20x+30\}$ (/70)	B1	method
	(111x + 114)/70 or showing LHS = RHS	Al	B1 for 1 slip (e.g84). Must be as a sum of 5 terms. Convincing must follow from fully correct working at each stage
		4	If no denominator then possible M1 (see note above), B1 B1 A0, however if denominator replaced later all marks are allowable
4	(a) $(y+\delta y =)$ $(x+\delta x)^2 + 3(x+\delta x)$ Intention to subtract $(y-)x^2 + 3x$ to find	B1 M1	Or alternative notation. Allow if final bracket omitted
	δy	Al	Accept δx^2 as meaning $(\delta x)^2$
	$(\delta y =)$ $2x\delta x + (\delta x)^2 + 3\delta x$ Dividing by δx and (lim) $\delta x \rightarrow 0$	MI A1	FT equivalent level of difficulty CAO. Must follow from correct working and notation
	$\frac{dy/dx = \lim \delta y/\delta x = 2x + \delta x \rightarrow 0}{\delta x \rightarrow 0}$		All notation throughout the working must be correct in order to award the final A1 Do not accept $dy/dx = \lim_{n \to \infty} 2x + 3$ as a final answer
			$x \to 0$
		5	Use of dy/dx throughout max 4 marks only, final A0

MARK SCHEME - SUMMER 2016

	Additional Mathematics		Final
5	$\frac{\text{Summer 2016}}{(4 - 2 + 2)^2} = \frac{(2 - 2)^2}{(2 - 2)^2}$	101	
5	(Area of circle(s) =) $(2\times) \pi \times 4^{2}$ or $(2\times)16\pi$ (Curved surface =) $2\times\pi\times4 \times 18$ or 144π (Area of card =) $(18 + 8 + 8) \times 2\times\pi\times4$ (= $34\times8\pi$)	M1 M1 M2	M1 for sight of $(\dots + 8 + 8) \times 2 \times \pi \times 4$ or $(18 + \dots + \dots) \times 2 \times \pi \times 4$
	(Area wasted =) ((18+8+8)× 2π ×4) - (2× π ×4×18+2× π ×4 ²)	m1	Intention to subtract areas of 2 circles and a rectangle from the card, depends on at least M3 previously awarded
	(=) 96π (cm ²) or answer in the range 300 (cm ²) to 302 (cm ²)	A1	CAO. Accept an answer in the range provided supported by correct working Alternative: (Width of card =) $2 \times \pi \times 4$ (= 25.1327 cm) M1 (M0 if stated as 'area of the circle' unless clearly used as
			(in origination of the card) (Area of the small rectangle =) $8 \times 2 \times \pi \times 4$ M1 (Area of a circle(s) =) $(2 \times) \pi \times 4^2$ M1 (Area wasted =) $2 \times 8 \times 2 \times \pi \times 4 - 2 \times \pi \times 4^2$ M2 (or M1 for $8 \times 2 \times \pi \times 4 - \pi \times 4^2$) (Area wasted =) 96π (cm ²) or 300 to 302 (cm ²) CAO A1
	QWC2: Candidates will be expected to • present work clearly, with words explaining process or steps	QWC 2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
	AND • make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR
	QWC1: Candidates will be expected to • present work clearly, with words explaining process or steps		evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
	 OR make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer 	8	QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
6	(a) Multiplier $(5-\sqrt{2}) / (5-\sqrt{2})$	M1	Allow if the multiplier is stated as $(5-\sqrt{2})$ provided it is used as $(5-\sqrt{2})/(5-\sqrt{2})$
	Denominator $25 + 5\sqrt{2} - 5\sqrt{2} - 2 \text{ OR } 25 - 2 \text{ OR } 23$ $3 (5 - \sqrt{2})/23 \text{ or } (15 - 3\sqrt{2})/23$	A1 A1	CAO. Mark final answer Unsupported answer is awarded no marks.
	(b)(i) $x^{15/5}/x^{1/2}$ or $x^{3/} x^{1/2}$ = $x^{5/2}$	B1 B1	Or equivalent first stage of working with indices CAO. Accept $x^{2.5}$ or $x^{21/2}$
	(ii) Correctly extracting a factor of $x^{1/9}$ (numerator) or $\frac{8x^{1/9}}{x^{2/9}} + 1(\frac{x^{2/9}}{(x^{2/9})})$	M1	
	$\frac{8+x^{1/9}}{x^{1/9}} \text{or} 8x^{-1/9}+1 \text{or} 8/x^{1/9}+1$	A1 7	CAO. Mark final answer

	Additional Mathematics		Final
7	Summer 2010 (a) $EG^2 = (-2 - 4)^2 + (14 - 6)^2 (-6^2 + 8^2)$	M1	Or equivalent Allow 1 slip or error
'	(a) I G = (-2 - 4) + (14 - 6) (-6 - 4) + (A1	CAO
	10 - (100 (- 10)		
	(b) Gradient FG (14-6)/(-2-4)	M1	
	= 8/-6 (= - 4/3)	A1	Do not ignore incorrect cancelling, mark final answer
	(c) $(-2+4)/2$ or $(14+6)/2$	M1	Sight of $(1,)$ or $(, 10)$ implies M1 provided no
	Mid point (1, 10)	A1	incorrect working is seen
	Perpendicular gradient ³ / ₄ (or 6/8)	B1	FT -1/ 'their answer in (b)'
	$\frac{y-10}{x-1} = \frac{3}{4}$ or $10 = \frac{3}{4} \times 1 + c$	M1	OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used
	$y-10 = \frac{3}{4} (x - 1)$ or $4(y - 10) = 3(x - 1)$ or $4y = 3x + 37$ or $c = \frac{9}{4}$ or $c = \frac{37}{4}$	m1	Do not allow for use gradient from their answer in (b), and/or points F or G. Only FT for 'their perpendicular gradient' (with B1 previously awarded) AND 'their mid point'
			CAO. Must be in this form with $=0$
	$4x_1 - 2x_2 - 27 = 0$ or $2x_2 - 4x_1 + 27 = 0$	A 1	
	4y - 3x - 37 = 0 or $3x - 4y + 37 = 0$	10	
8	$(dy/dx=) 3x^2 - 6x$	B1	
	$dy/dx = 0$ or $3x^2 - 6x = 0$ or $3x^2 = 6x$	M1	FT their dy/dx form $ax^2 \pm bx$
	x = 0 and $y =$	A1	
	11 $x = 2$ and $y = 1$	AI	Answer only, no working shown M0 A0 A0
	x = 2 and $y = 7$	M1	Or first derivative test, interpretation of first derivative
			test. Or alternative (e.g. full graphical method with
	$d^2y/dx^2 = 6x - 6$		explanation)
		A1	FT for their x value
		A1	FT for their other x value provided this does not have
	$(0, (11)): \frac{d^2y}{dx^2} < 0$, point is a maximum $(2, (7)): \frac{d^2y}{dx^2} > 0$, point is a minimum		the same interpretation as the first x value
			Answer only, no working shown M0 A0 A0
			If $d^2y/dx^2 = cx + d$ where $c \neq 0$ and test applied correctly
			then SC2 instead of final A1, A1 (as M1 has not been
		7	awarded))
9		/	Working must be shown throughout
	(a) $\frac{1/\sqrt{2}}{1/\sqrt{2}} = 1$	B1	Must be sight of $1/\sqrt{2} / 1/\sqrt{2}$ or $\sqrt{2}/2 / \sqrt{2}/2$ or $\cos 45^{\circ}/\sin 45^{\circ} = 1/\tan 45^{\circ}$
	(b) $(\frac{1/2}{\sqrt{3}/1} =) \frac{1}{2\sqrt{3}} \frac{(\times\sqrt{3})}{(\times\sqrt{3})}$ or $\frac{1/2}{\sqrt{3}} \frac{\sqrt{3}}{3}$	M1	Must be sight of $\frac{\frac{1}{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ leading to $\frac{\frac{1}{2}\sqrt{3}}{3}$
			Do not accept $\frac{1}{2} \div \sqrt{3}$
	$=\sqrt{3}/6$	A1	
	(c) $(\sqrt{3}/2)^2 + 1^{(2)}$	M1	This stage must be seen, do not accept starting with $\frac{3}{4}$ + 1, this is M0, A0
	7/4 or 1 ³ /4 or 1.75	A1	
		5	

	Additional Mathematics		Final
10	Summer 2016	141	
10	(a) $(4)^3 + 6(4)^2 - (4) - 30 (= 64 + 96 - 4 - 30)$	MI A1	Or division method giving $x^2 + 10x \dots$
	= 126 (b)(i) Substitute x = 2 Showing f(2) = 0	M1 A1	Or division method giving $x^2 + 8x \dots$ Convincing, working shown Allow $2^3 + 6(2)^2 - (2) - 30 = 0$
11	(ii) $(x-2)(x^2 + bx + c)$ or intention to divide by $(x-2)$ with x^2 shown $((x-2))(x^2 + 8x + 15)$ ((x-2))(x+3)(x+5)	M1 A2 A1 8	A1 for +8x or +15. Or use of factor theorem A1 (x+3), A1 (x+5) CAO. Mark final answer, <i>but ignore attempts to 'solve'</i>
11	(a) Correct shaped graph with (0 ⁻), 180 ⁻ & 360 ^o labelled on the x-axis AND 2 & 8 labelled on the y-axis	83	 Intention for approximately (90°, 5) and (270°, 5) B2 awarded a for correct shape graph with conditions: cosx reflected with one complete period, labelled 0° to 360° with difference in y values between maximum and minimum of 6, for their labels OR B1 for a correct shape graph with any two of the 3 bullet points above met If no marks, award SC1 for a curve through at least 5 correct points across the full range with all other conditions met. Do not accept a parabola or straight lines
	(b) Maximum value 8 AND Minimum value 2	B2	Accept Maximum (180(°), 8) and Minimum (360(°), 2) Allow unsupported correct responses FT provided at least B2 previously awarded in (a) B1 for either value correct, or for a difference between their max and min of 6, or if their answers are reversed (including Maximum (180(°), 2) and Minimum (360(°), 8))
12	(a) $(dy/dx=)$ $21x^6+4$	B1	Accept sight of $21x^6 + 4$
	$(d^2y/dx^2) = 126x^5$	B1	FT to 2^{nd} B1 from dy/dx = kx ⁿ (+ m)
	(b) $(4/4) x^4 + (2/2)x^2 + (4/-1) x^{-1} + c$ (constant)	B3 B1	B1 for each term. Accept unsimplified. ISW Award if at least B1 given for integration
	(c) $8x^2/2 + 2x$ [$8x^2/2 + 2x$] ³ ₂ and with intention to substitute and subtract	B2 M1	B1 for $8x^{2/2}$ or 2x Intention to use 3, 2 (in either order) and subtract FT their integration, not the same terms as given or differentiated, this includes if there is only1 term seen.
	$=(8\times3^2/2+2\times3)-(8\times2^2/2+2\times2)$ (= 42 – 20)	A1 A1	FT for correct use of limits provided working with 2 terms from 'their integration' CAO, not FT.
	= 22	11	Answer only, no working shown, M0 A0 A0

	Additional Mathematics		Final
	Summer 2016		
13	(When $x = 3$) $y = 33$	B1	
	(Gradient when $x = 3$, $dy/dx = 3 \times 2x$	MI	For differentiation, before substitution of $x = 3$
	18	Al	
	Equation $y - 33 = 18$ or $33 = 18 \times 3 + c$	M1	FT values for 'their 33' and 'their 18' provided at least
	$\frac{y}{x-3}$ is also for $x = 1$		one of these is correct.
	y - 33 = 18(x - 3) or $c = -21$	m1	Implies previous M1
	y = 18x - 21 or equivalent	A1	CAO. Mark final answer
	-	6	
14	Method to solve simultaneously, e.g. use of	M1	$10 - x = x^2 - 6x + 14$ or $y = (10 - y)^2 - 6(10 - y) + 14$
	y = 10 - x or $x = 10 - y$ into the first		
	equation		
		A1	Must '=0' or implied in further working
	$x^2 - 5x + 4 = 0$ or $y^2 - 15y + 54 = 0$	m1	OR x = $(5 \pm \sqrt{9})/2$ or y = $(15 \pm \sqrt{9})/2$
	(x-4)(x-1) (=0) or $(y-9)(y-6)$ (=0)		FT from their quadratic
		A1	CAO
	(4, 6) and (1, 9)		Need not be in this form, accept $x=4$, $y=6$ with $x=1$,
			y=9
			x & y values must be given
			Do not accept unsupported responses
		4	Do not accept trial & improvement
15	(a) Intention to substitute $x=2$ and $x=4$	M1	OR substituting either value and showing $y = 0$
	into $v = -x^2 + 6x - 8$		OR attempt to factorise as a pair of brackets
			((-)x2)(x4)
			Do not accept $(-2)^2 + 6 \times 2 - 8$ and $(-4)^2 + 6 \times 4 - 8$
			Accept $-2^2 + 6 \times 2 - 8$ and $-4^2 + 6 \times 4 - 8$
	Showing $y = 0$ for both values	A1	OR factorised as $(-)(x-2)(x-4)$ or equivalent
	(b) Intention to integrate	M1	Intention to integrate (manipulated given, hence not
	(c) Intention to integrate	1711	using given or differentiated)
	$-x^{3}/3 + 6x^{2}/2 - 8x$	A2	A1 one term correct.
	Use of correct limits $4 \& 2$ in the correct	m1	The limits must be used in the correct order
	order and intention to subtract		
	4/3 or 1.33(3)	A1	CAO. Only allow 1.3 from correct working and sight of
			4/3
			Answer only gets no marks
			No marks for use of the trapezium rule
		7	

Level 2 Certificate in Additional Mathematics MS Summer 2016