

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2011

INTRODUCTION

The marking scheme which follows is that those used by WJEC for the Summer 2011 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. It was finalised after detailed discussion at the examiners' conference by all the examiners involved in the assessment. The conference was held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	WJEC Level 2 Certificate in		Comments
	Additional Mathematics	Mark	(Final)
	Summer 2011		
1	(a)(3x+1)(2x-5)	B2	B1 $(3x - 1)(2x + 5)$ or $(2x - 1)(3x - 5)$. Ignore sight of "=0"
	-1/3 or 5/2	B2	FT for their factors. B1 for each answer
	(b) $(x+3)^2 \pm \dots$	B1	Sight of $(x+3)^2$
	4	B1	Accept - 9 + 5 if not evaluated, otherwise mark final value
	Least value -4 (indicated) ISW	B1	FT their value but not -9 or +5
		7	
2			Penalise further incorrect working once only -1 in question
	(a) $32x^3 + 3(+0)$	B3	B1 for $32x^3$ (not $4 \times 8x^3$), B1 for +3, and B1 for +0 (or blank
			from final term) provided at least one other mark awarded.
	(b) $-4x^{-5}$ or $-4/x^{5}$	B1	CAO. Index needs to be simplified
	(c) $3/4 \text{ x}^{-1/4}$ or equivalent	B1	CAO. Index needs to be simplified
		5	
3	(a) $(AB^2 =) (2-4)^2 + (86)^2 (=2^2 + 14^2)$	M1	Allow $(2-4)^2 + (8-6)^2$
	$AB = \sqrt{200}$ ISW (=14.14 or $10\sqrt{2}$)	A1	CAO
	(b) Grad. AB $(86) / (2 - 4)$	M1	Allow (8-6)/(2-4) or (6-8)/(4-2)
	= 14/-2 (= - 7)	A1	
	Grad. perpendicular $2/14 \ (= 1/7)$	B1	FT -1/grad AB
	(2+4)/2, $(8+-6)/2$	M1	Accept $(3,)$ or $(, 1)$
	Mid point AB (3, 1) or equivalent	Al	CAO
	Use of $y=mx+c$ or $y-y_1=m(x-x_1)$	M1	FT their mid-point (not A or B) & their <u>perpendicular</u> grad.
	y - 1 = 1/7 (x - 3) ISW	Al	CAO $(x - 7y + 4 = 0)$ $(y = x/7 + 4/7)$
		9	
4		M1	Attempt to use common denominator
	$\{ 6(2x) - 21(x-3) + 2(3x+2) \}/42$	Al	Or equivalent
	$\frac{12x-21x+63+6x+4}{42}$	Al	Al for I slip (e.g63)
	(67 - 3x)/42 or showing LHS = RHS	AI	Convincing
			If no denominator then MU BI BI AU, nowever if
		4	aenominator replaced in taler all marks are allowable
5	$(2) 6(2)^3 12(2)^2 + (2) + 2 (-162 117 2+2)$	4 M1	Or division method giving $6x^2$ 31x
5	(a) 0(-5) - 15(-5) + (-5) + 2 = -280		of division method giving ox -51x
	(b)(i) Substitute $x = 2$	M1	Or division method giving $6x^2 - x$
	(b)(1) Substitute $x = 2$ Showing $f(2) = 0$		Convincing working shown $(48 - 52 + 2 + 2)$
	(ii) $(x-2)(6x^2 + bx + c)$	111	(-52 + 2 + 2)
	or intention to divide by $(x-2)$ with $6x^2$ shown	M1	
	$((x - 2))$ $(6x^2 - x - 1)$	A2	A1 for -x or -1. Or use of factor theorem A1 $(3x+1)$ A1
			(2x-1)
	((x-2))(3x+1)(2x-1) ISW	A1	CAO
		8	
6			Or for equivalent processes
	Sight of $tan60 = \sqrt{3}$	M1	$\overline{\text{OR sin}30} = \frac{1}{2}$ and $\sin 60 = \sqrt{3}/2$ with sine rule method
	Tan60 = 7/h	M1	AX/sin30 = 7/sin60 or equivalent
	$h = 7/\sqrt{3}$ (= $7\sqrt{3}/3$ or equivalent)	A1	CAO. Do not accept decimal notation
	$BX = h$ OR $AB^2 = h^2 + h^2$ OR $cos45=h/AB$	M1	FT 'their h'. Or cosine rule
	OR sin45=BX/AB with AX=AB		
	AB = $7\sqrt{2/3}$ or equivalent $(7\sqrt{6}/3)$	A1	CAO. Do not accept decimal notation
			Use of decimal notation, max mark is M0, M1,A0,M1,A0
		5	
L		-	1

	WJEC Level 2 Certificate in Additional Mathematics	Mark	Comments
	Summer 2011	IVIAIK	(r mai)
7	2(x+1) + 2(y+3) = 62 ISW (x+0)(2x+x) = 702 ISW	B1 D1	Or $2x + 2y + 8 = 62$ OR $x + y + 4 = 31$ OR $y=27-x$
	(x + 9)(2x + y) = 703 IS w Attempt to solve the simultaneous equations, at least	M1	For $2x + 18x + xy + 9y = 703$ Provided at least B1 $2x^2 + 18x + x(27-x) + 9(27-x) = 703$
	being quadratic		$2x^2 + 18x + 27x - x^2 + 243 - 9x = 703$
	$x^2 + 36x - 460 = 0$	Al m1	CAO Or for correct use of quadratic formula (correct substitution
	(x - 10)(x + 46) = 0		& correct simplification of $b^2 - 4ac$) or completing the
	y = 10 (y=-46)	Δ1	square. FT equivalent level of difficulty
	A is 11 (cm) by 20 (cm) AND B is 19 (cm) by 37 (cm)	A1	CAO
	Look for:		Or alternate working $(36 - y)(54 - y) = 703$
	Clear which equation to which rectangle or diagram		$\frac{1944 - 54y - 36y + y^2}{y^2 - 90y + 1241 - 0}$
	• Correct use of brackets in set up and the		(y - 17)(y - 73) = 0
	correct use '=' throughout		y = 73, x = -46; y = 17, x = 10
	• Final answer with some text and units, if no final answer then needs to have text/label	Q	QWC2 Presents relevant material in a coherent and logical
	connection with equations	W	manner, using acceptable mathematical form, and with few
	OWC2 [.] Candidates will be expected to	2	If any errors in spenning, punctuation and grammar.
	 present work clearly, with symbols/words 		QWC1 Presents relevant material in a coherent and logical
	explaining process or steps OR in conclusion		spelling, punctuation or grammar
	• make few if any mistakes in mathematical		OR
	form, spelling, punctuation and grammar in		evident weaknesses in organisation of material but using
	their answer		spelling, punctuation and grammar.
	QWC1: Candidates will be expected to		OWCO Evident weaknesses in organisation of material and
	• present work clearly, with symbols/words explaining process or steps OR in conclusion		errors in use of mathematical form, spelling, punctuation or
	OR		grammar.
	 make few if any mistakes in mathematical form spelling punctuation and grammar in 		
	their answer	9	
8	(a) $y+\delta y = (x+\delta x)^2 + 2(x+\delta x)$ Interview to subtract (iv) $x^2 + 2x$, to find Six	B1 M1	Or alternative notation. Allow if final bracket omitted
	$\delta y = 2x\delta x + (\delta x)^2 + 2\delta x$	Al	Accept δx^2 as meaning $(\delta x)^2$
	Dividing by δx and $\lim \delta x \rightarrow 0$	M1	FT equivalent level of difficulty
	$dy/dx = \lim_{\delta x \to 0} \delta y/\delta x = 2x + 2$	AI	Use of dy/dx throughout max 4 marks only, final A0
	(b) $2x + 2 = 12$	M1	FT from their response in (a) into (b)
	x = 5	A1 7	
9	(a) $280x^6$	B2	B1 for sight of $40x^7$. FT to 2^{nd} B1 from dy/dx = kx ⁿ
	(b) $4/7 x^7 - 1/x + 9x + a$	B3 B1	B1 for each term. Accept unsimplified $(-x^{-1} \text{ or } +x^{-1}/-1)$ ISW
	(c) $3x^{3}/3 + x$	B1 B2	B1 for $3x^{3}/3$ or x. Mark final answer
	$[3x^{3}/3 + x]_{1}^{2}$	M1	FT their <u>integration</u> . Intention to use 2, 1 and subtract
	=(2 + 2) - (1 + 1) = 8	AI A1	CAO, not FT. Answer only, no working shown M0 A0 A0
1.0	(1, (1, 1), (2, 1))	11 D1	
10	$(ay/ax=) 6x^{-} - 6$ $dy/dx = 0$ or $6x^{2} - 6 = 0$	BI M1	FT their dy/dx form $ax^2 + b$
	x = 1 and $y = 1$	A1	
	x = -1 and $y = 9d^2v/dx^2 = 12x$	Al M1	Answer only, no working shown M0 A0 A0 Or first derivative test, interpretation of first derivative test
			Or alternative.
	$(-1, (9)): d^2y/dx^2 < 0$, point is a maximum $(1, (1)): d^2y/dx^2 > 0$, point is a minimum	A1 A1	FT for their x value FT for their other x value provided this does not have the
			same interpretation as the first x value
			Answer only, no working shown MO AO AO If $d^2 w(dx^2 - my) where a C and test and is descented.$
		7	if a y/ax $-nx$ where $n\neq 0$ and less applied correctly then $SC2$

	WJEC Level 2 Certificate in		Comments
	Additional Mathematics	Mark	(Final)
	Summer 2011		
11	(a)(i) 5/6	B2	Working needs to be shown otherwise B0
			B1 for either 1/6 or 5.
	(ii) Sight of 7 ⁻² or 49 ⁻¹ AND 1/49	B1	CAO. Answer only, no working shown BO.
	(b) (i) $30x^{7/4}$	B1	Or for an intermediate stage working with indices, maybe
	$\frac{1}{x^{5/4}}$		implied by a correct answer
	$= 30x^{1/2}$	B1	CAO. An answer of $30x^{2/4}$ implies first B1 only
			* *
	(ii) $y^{1/5}(3+2y)$	B1	Maybe implied by sight of the correct answer
	$5y^{1/5}$		
	= 3 + 2y or $3/5 + 2y/5$	B1	CAO. Mark final answer
	5	7	When splitting into 2 fractions, SC1 for $3/5 + 2y^{6/5}/5y^{1/5}$ or
			for + $2y^{5/5}/5$
12	$\int (2u - u^2) du$		
	$\int (3x - x) dx$	M1	Do not penalise dx omitted. Limits not required
	$3x^2/2 - x^3/3$	A2	A1 for each
	Correct use of limits	m1	
	4.5 or equivalent	A1	CAO
	4.5 of equivalent	5	No marks for use of trapezium rule
13	Attempt to clear fractions	M1	For initial correct idea including expressing all terms over
			common denominators. Allow one slip
			Using '+' within the denominator is $M0$
	$3 \times 2(x-3)(3x) + 2(x-6)(x-3) = 3x(3x+1)$	M1	Allow one slip, equivalent level of difficulty
	$18x^2 - 54x + 2x^2 - 12x - 6x + 36 = 9x^2 + 3x$	M1	Allow one slip, equivalent level of difficulty
	$11x^2 - 75x + 36 = 0$	A1	CAO
	$x = \{75 + \sqrt{(75^2 - 4 \times 11 \times 36)}\} / 2 \times 11$ or equivalent	M1	FT from their similar quadratic. Allow 1 slip in substitution
	$= \{75 + \sqrt{4041}\} / 22$	A1	
	6.3(0) and 0.52	A1	
		7	
14	(a) General sine curve through $(0,0)$, y values +3	B1	Must have <u>clear</u> the intention of $+3$
	Sine curve with period clearly 180°	B1	
	(b) 9.7° and 80.3° only	B3	B2 for any 1 correct or 9.8 with 80.2, or 9.7 with 80.2
			(un)rounded or truncated to 2 or more decimal places
		5	B1 for one answer (un)round or truncated to 2 or more dp.
15	Idea that BC = the circumference of the base of cone	S1	-
	BC = $(140/360) \times 2 \times \pi \times 18 \ (= 43.982)$	M1	
	Radius = BC / 2π	M1	
	= 7(cm)	A1	CAO
			Alternative: Idea to use area of sector AND IIrl S1
			Area sector = $140/360 \times \Pi \times 18^2$ provided S1 awarded M1
			$18\Pi r = ' their area of sector' M1$
		4	7(cm) CAO Al

Level 2 Certificate in Additional Mathematics - Summer 2011

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>