GCSE MARKING SCHEME

SUMMER 2019

ADDITIONAL MATHEMATICS

 9550/01
INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

SUMMER 2019 MARK SCHEME

		Mark	Comment
1	(a)(i) $(9 x+5)(3 x-1)$ (ii) $-5 / 9$ with $1 / 3$ or equivalent or $-0.55(5 \ldots$) or -0.556 with $0.33(3 \ldots)$ (b)(i) $(x+5)^{2} \pm \ldots$ $\ldots \ldots . .+10$ (ii) Least value (+)10 (iii) $(\mathrm{x}=)-5$ $\begin{aligned} & \text { (c) } \begin{array}{l} (x-22 / 2)^{2}-121=-5 \text { or } \\ \begin{array}{l} (x-22 / 2)^{2}-121+5=0 \\ (x-11)^{2}=121-5 \end{array} \\ x=11 \pm 2 \sqrt{ } 29 \end{array} \end{aligned}$	B2	Mark final answer. Ignore inclusion of ' $=0$ " B1 $(9 x \pm 5)(3 x \pm 1)$ or $9 x(3 x-1)+5(3 x-1)$ or or $(x-1 / 3)(27 x+15)$ or $\frac{(27 x-9)(27 x+15)}{27}$ or sight of $(9 x+5)$ AND $(3 x-1)$ If a restart in (ii) to factorise, do not alter marking in (i), unless the candidate is clearly replacing their answer (i) Ignore sight of " $=0$ " Must be from factorising. STRICT FT for their factors. B1 for each answer Do not accept from the use of the quadratic formula Sight of $(x+5)^{2}$. Ignore sight of ' $=0$, Do not accept ${ }^{\prime}=-10$ ' or ${ }^{\prime}=10$ ' $(x+5)^{2}+10, B 1, B 1 I S W$ Allow $+35-25$ for 10 provided 10 seen in later working Must follow completing the square FT their value but not 35 or -10 FT from 'their $(x+5)^{2}$, Do not accept $(-5,10)$ Allow for sight of $(x-22 / 2)^{2}-121+5$ or $(x-22 / 2)^{2}-$ 116 FT from 1 slip, e.g. for sight of $(x-11)^{2}=126$ or $(x-11)^{2}-126=0$ Allow A2 for $x=11 \pm \sqrt{ } 116$ ISW A1 for $11+\sqrt{ } 116$ or $11+2 \sqrt{ } 29$ or $11-\sqrt{ } 116$ or $11-2 \sqrt{ } 29$ or FT $11 \pm \sqrt{ } 126$ or $11 \pm 3 \sqrt{ } 14$ No working in (c), no marks
2	(a) $40 x^{3}+6 x(+0)$ (b) $-22 x^{-12}$ or $\frac{-22}{x^{12}}$ (c) $7 / 8 \mathrm{X}^{-1 / 8}$ or $\frac{7}{8 x^{1 / 8}}$	B3 B1 B1 5	Penalise ' $+c$ ' shown -1 only throughout B1 for $40 x^{3}\left(\right.$ not $\left.10 \times 4 x^{3}\right)$, B1 for $+6 x(\operatorname{not} 3 \times 2 x)$, and B1 for +0 (or blank) provided at least 1 other mark awarded. Mark final answer Mark final answer Index needs to be simplified. Mark final answer

\begin{tabular}{|c|c|c|c|}
\hline 3 \& $$
\begin{aligned}
& \{55(\mathrm{x})-22(\mathrm{x}+3)+10(\mathrm{x}+5)\} \\
& \\
& \begin{array}{ll}
\{55 \mathrm{x}-22 \mathrm{x}-66+10 \mathrm{x}+50\} & (/ 110) \\
(43 \mathrm{x}-16) / 110 \text { or showing LHS } \equiv \text { RHS }
\end{array}
\end{aligned}
$$ \& M1
B1

B1
A1

4 \& | Attempt to use common denominator, may be implied by sight of $55(\mathrm{x})-22(\mathrm{x}+3)+10(\mathrm{x}+5)$ without sight of /110 |
| :--- |
| May be seen in stages |
| Or equivalent. May be seen in stages, as intention of method |
| B1 for 1 slip (e.g. +66). Must be as a sum of 5 terms. Convincing must follow from fully correct working at each stage |
| Allow following sight of 3 separate correct fractions with denominator 110 seen |
| If no denominator then possible M1 (see note above), B1 B1 A0, however if denominator replaced later all marks are allowable |

\hline 4 \& | (a) $(y+\delta y=) \quad(x+\delta x)^{2}+7(x+\delta x)+2$ |
| :--- |
| Intention to subtract $(y=) x^{2}+7 x+2$ to find ठy $\begin{aligned} & (\delta y=) \quad 2 x \delta x+(\delta x)^{2}+7 \delta x \\ & \text { Dividing by } \delta x \text { and }(\lim) \delta x \rightarrow 0 \\ & \text { dy/dx }=\lim \delta y / \delta x=2 x \\ & +7 \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| 5 | \& | Or alternative notation. Allow if final bracket omitted |
| :--- |
| Accept δx^{2} as meaning $(\delta x)^{2}$ |
| FT equivalent level of difficulty |
| CAO. Must follow from correct working and notation |
| All notation throughout the working must be correct in order to award the final A1 |
| Do not accept $d y / d x=\lim _{x \rightarrow 0} 2 x+7$ as a final answer |
| Use of $d y / d x$ throughout max 4 marks only, final A0 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(a) \((3)^{3}+8(3)^{2}-2(3)+6(=27+72-6+\) \\
6)
\[
=99
\] \\
(b)(i) Substitute \(\mathrm{x}=-3\) \\
Showing \(\mathrm{f}(-3)=0\) \\
(ii) \((x+3)\left(x^{2}+b x+c\right)\) or intention to divide by \((x+3)\) with \(x^{2}\) shown
\[
\begin{aligned}
\& ((x+3)) \quad\left(x^{2}-2 x-35\right) \\
\& \quad((x+3))(x+5)(x-7)
\end{aligned}
\]
\end{tabular} \& M1
A1
M1
A1

M1

A2
A1

8 \& | Or division method giving $\mathrm{x}^{2}+11 \mathrm{x} \ldots$ |
| :--- |
| Or division method giving $\mathrm{x}^{2}-2 \mathrm{x} \ldots$ |
| Convincing from working shown (not if incorrect working seen), allow $(-3)^{3}+(-3)^{2}-41(-3)-105=0$, also allow for sight of $-3^{3}+-3^{2}-41 \times-3-105=0$ provided no incorrect calculation is given such as -3^{2} as -9 |
| A1 for -2 x or -35 . |
| Or use of factor theorem A1 (x+5), A1 (x-7) CAO. Mark final answer, but ignore attempts to 'solve' |

\hline 8 \& $$
\begin{aligned}
& (d y / d x=) 12 x^{2}-6 x \\
& d y / d x=0 \text { or } 12 x^{2}-6 x=0 \text { or } 12 x^{2}=6 x \\
& x=0 \quad \text { and } y=20 \\
& 193 / 4 \\
& x=1 / 2 \quad \text { and } y= \\
& d^{2} y / d x^{2}=24 x-6
\end{aligned}
$$ \& B1

M1
A1
A1

M1

A1
A1

7 \& | FT their dy/dx form $\mathrm{ax}^{2} \pm \mathrm{bx}$ |
| :--- |
| If A0, A0 here, award A1 for $\mathrm{x}=0$ with $\mathrm{x}=1 / 2$ Answer only, no working shown M0 A0 A0 |
| Or first derivative test, interpretation of first derivative test. Or alternative (e.g. full graphical method with explanation) |
| FT for their x value |
| FT for their other x value provided this does not have the same interpretation as the first x value |
| Answer only, no working shown M0 A0 A0 If $d^{2} y / d x^{2}=c x+d$ where $c \neq 0$ and test applied correctly then SC2 instead of final A1, A1 (as M1 has not been a warded))provided one minimum and one maximum |

\hline 9 \& $\frac{\sqrt{3}}{2} \times \frac{1}{2}=\frac{\sqrt{3}}{4}$ \& \& Working must be shown

\hline 10 \& | (a) $\mathrm{FG}^{2}=(-4-8)^{2}+(10-28)^{2}$ $\left(=12^{2}+18^{2}=\right.$ |
| :--- |
| 468) $F G=6 \sqrt{ } 13$ |
| (b) Gradient FG (28-10)/(8--4) $=18 / 12(=9 / 6=3 / 2)$ |
| (c) $(-4+8) / 2$ or $(10+28) / 2$ |
| Mid point $(2,19)$ |
| Perpendicular gradient $-2 / 3$ |
| (or -6/9 or -12/18) $\frac{y-19}{x-2}=\frac{-2}{3} \quad \text { or } 19=-2 / 3 \times 2+c$ $\mathrm{y}-19=-2 / 3(\mathrm{x}-2) \text { or } 3(\mathrm{y}-19)=-2(\mathrm{x}-$ |
| 2) |
| or $3 y=-2 x+61$ |
| or $\mathrm{c}=20^{1 / 3}$ or $\mathrm{c}=61 / 3$ $2 x+3 y-61=0 \quad \text { or } \quad-2 x-3 y+61=0$ | \& M1

A1
M1
A1
M1
A1
B1
M1
m1
m1

A \& | Or equivalent. Allow 1 slip or error M1, A0 for answers $\sqrt{ } 468$ or 21.6(3...) CAO |
| :--- |
| Do not ignore incorrect cancelling, mark final answer |
| Sight of $(2, \ldots)$ or $(\ldots, 19)$ implies M1 provided no incorrect working is seen |
| FT -1/ 'their answer in (b)' |
| OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. |
| FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used |
| Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT for 'their perpendicular gradient' (not 'their answer' from (b)) AND 'their mid point' |
| CAO. Must be in this form with ' $=0$ ' with terms in any order |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
(a) Correct shaped graph with \(\left(0^{\circ},\right) 180^{\circ}\) \& \(360^{\circ}\) labelled on the x -axis AND \(2,7 \& 12\) labelled on the \(y\)-axis \\
(b) Maximum value 12 AND Minimum value 2
\end{tabular} \& \begin{tabular}{|c}
B3
\end{tabular} \& \begin{tabular}{l}
Ignore outside the required range \\
Intention for approximately \(\left(0^{\circ}, 7\right),\left(90^{\circ}, 2\right),\left(180^{\circ}, 7\right)\), \(\left(270^{\circ}, 12\right)\) and \(\left(360^{\circ}, 7\right)\) \\
B2 awarded a for correct shape graph with conditions: \\
- \(\quad \sin x\) reflected \\
- with one complete period, labelled \(0^{\circ}\) to \(360^{\circ}\) \\
- with difference in y values between maximum and minimum of 10 , for their labels \\
OR \\
B1 for a correct shape graph with any 2 of the 3 bullet points above met, OR \\
B1 for a graph with all 3 bullet points above met but joined by straight lines (even if turning points curved), OR \\
B1 for a curved graph through intended points: \(\left(0^{\circ}, 7\right)\), \(\left(90^{\circ}, 2\right),\left(180^{\circ}, 7\right),\left(270^{\circ}, 12\right)\) and \(\left(360^{\circ}, 7\right)\) \\
Accept Maximum \(\left(270\left(^{\circ}\right), 12\right)\) and Minimum \(\left(90\left({ }^{\circ}\right), 2\right)\) Allow unsupported correct responses FT provided at least B2 previously awarded in (a)
\end{tabular} \\
\hline 12 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { (a) } \begin{array}{l}
(d y / d x=) \quad 16 x^{7}+8 x \\
\left(d^{2} y / d x^{2}=\right) \quad 112 x^{6}+8
\end{array} .
\end{aligned}
\]
\[
\begin{aligned}
\& \text { (b) }(5 / 5) x^{5}+(3 /-1) x^{-1}+(-2 /-2) x^{-2} \\
\& \left(=x^{5}-3 x^{-1}+x^{-2}\right)+c \\
\& \text { (constant) }
\end{aligned}
\] \\
(c) \(6 x^{2} / 2+10 x\) \\
[\(\left.6 x^{2} / 2+10 x\right]^{3} 2\) and with intention to substitute and subtract
\[
\begin{aligned}
\& =\left(6 \times 3^{2} / 2+10 \times 3\right)-\left(6 \times 2^{2} / 2+10 \times 2\right) \\
\& (=57-32) \\
\& =\quad 25
\end{aligned}
\]
\end{tabular} \& B1
B1
B3
B1
B2
M1

A1
A1

11 \& | FT to $2^{\text {nd }} \mathrm{B} 1$ from $\mathrm{dy} / \mathrm{dx}=\mathrm{kx}^{\mathrm{n}}(+\ldots)$ |
| :--- |
| B1 for each term. Accept unsimplified. ISW |
| Award if at least B1 given for integration |
| B1 for $6 x^{2} / 2$ or $10 x$ |
| Intention to use 3, 2 (in either order) and subtract FT their integration, not the same terms as given or differentiated, this includes if there is only 1 term seen. |
| FT for correct use of limits provided working with 2 terms from 'their integration' |
| CAO, not FT. |
| Answer only, no working shown, M0 A0 A0 |

\hline 13 \& | (When $x=2$) $y=27$ |
| :--- |
| (Gradient when $x=2, d y / d x=) 5 \times 2 x$ $\begin{gathered} \text { Equation } \frac{\mathrm{y}-27}{\mathrm{x}-2}=20 \text { or } 27=20 \times 2+\mathrm{c} \\ \mathrm{y}-27=20(\mathrm{x}-2) \text { or } \mathrm{c}=-13 \\ \mathrm{y}=20 \mathrm{x}-13 \end{gathered}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { m1 } \\
\text { A1 } \\
6
\end{gathered}
$$

\] \& | For differentiation, before substitution of $x=2$ |
| :--- |
| FT values for 'their 27' and 'their 20' provided at least one of these is correct. |
| Implies previous M1 |
| CAO. Mark final answer |

\hline 14 \& Method to solve simultaneously, e.g. use of $y=2 x+1$ or $x=(y-1) / 2$ into the first equation

$$
\begin{aligned}
& x^{2}-7 x+12=0 \quad \text { or } y^{2}-16 y+63=0 \\
& (x-3)(x-4) \quad(=0) \text { or }(y-9)(y-7) \quad(=0) \\
& (3,7) \text { and }(4,9)
\end{aligned}
$$ \& M1

A1
m1
A1

4 \& | $2 x+1=x^{2}-5 x+13 \text { or } y=\frac{(y-1)^{2}}{2^{2}}-\frac{5(y-1)}{2}+13$ |
| :--- |
| Or equivalent but must ' $=0$ ' or implied in further working |
| OR $x=(7 \pm \sqrt{ } 1) / 2$ or $y=(16 \pm \sqrt{ } 4) / 2$ |
| FT from their quadratic |
| CAO |
| Need not be in this form, accept $x=3, y=7$ with $x=4$, $\mathrm{y}=9$ |
| $\mathrm{x} \& \mathrm{y}$ values must be given |
| Do not accept unsupported responses |
| Do not accept trial \& improvement |

\hline
\end{tabular}

15	Working to support that $(7,10)$ and $(2,-5)$ both lie on the curve	B2	Working, e.g. - \quad substituting the x -values and correctly finding y -values - substituting coordinates for the points and showing " $=55$ " (Allow sight of -5^{2} in working provided -25 is not seen) B1 for either correct working for either point
16	Intention to integrate $-x^{3} / 3+8 x^{2} / 2-12 x$ Use of correct limits $6 \& 2$ in the correct order and intention to subtract $32 / 3$ or $10.66(6 \ldots)$ or 10.7	M1 A2 m1 A1	Intention to integrate (not using given or differentiated) A1 one term correct. The limits must be used in the correct order CAO. Only allow 10.6 from correct working seen Answer only gets no marks No marks for use of the trapezium rule

Differentiating from first principles. Marking guide.

Q4.

4	(a) $(y+\delta y=) \quad(x+\delta x)^{2}+7(x+\delta x)+2$ Intention to subtract $(y=) x^{2}+7 x+2$ to find δy 7 $\begin{aligned} & (\delta y=) \quad 2 x \delta x+(\delta x)^{2}+7 \delta x \\ & \text { Dividing by } \delta x \text { and }(\lim) \delta x \rightarrow 0 \\ & \text { dy } / \mathrm{dx}= \\ & \qquad \lim _{\delta x \rightarrow 0} \delta y / \delta x=2 x+ \end{aligned}$	B1 M1 A1 M1 A1 5	Or alternative notation. Allow if final bracket omitted Accept δx^{2} as meaning $(\delta x)^{2}$ FT equivalent level of difficulty CAO. Must follow from correct working and notation All notation throughout the working must be correct in order to award the final A1 Do not accept dy/dx $=\lim _{x \rightarrow 0} 2 x+7$ as a final answer Use of $d y / d x$ throughout max 4 marks only, final A0

B1 For sight of $(x+\delta x)^{2}+7(x+\delta x)+2$ or $(x+h)^{2}+7(x+h)+2$ or using alternative notation. This mark is given whether $(x+\delta x)^{2}+7(x+\delta x)+2$ stands alone or is embedded in an expression or a formula.

M1 For the intent to subtract $x^{2}+7 x+2$ from the above.
So $(x+8 x)^{2}+7(x+8 x)+2-x^{2}+7 x+2$ will gain the M1 even though there are missing brackets.
It can also be awarded to those who have expanded $(x+\delta x)^{2}+7(x+\delta x)+2$ and then crossed out the x^{2} term and the $+7 x$ term and 2 .
Those who reverse the subtraction will gain M0 unless there is evidence later on of dividing by $-\delta x$.

A1 For sight of $2 x \delta x+(\delta x)^{2}+7 \delta x$ (Accept δx^{2} as meaning $\left.(\delta x)^{2}\right)$ with no other terms. Treat as a CAO.
$2 x+\delta x+7$ will imply the above if division by δx has already been done.
M1 A FT, if of equivalent difficulty, is possible for this M1 (but not the subsequent A1).
A correct division by δx has to be done
(so if a FT it has to be correct for their $2 \mathrm{x} \delta \mathrm{x}+(\delta \mathrm{x})^{2}+78 \mathrm{x}$)
AND we must see ' $\lim \delta x \rightarrow 0$ ' OR ' $\delta x \rightarrow 0$ ' OR ' δx tends to 0 '.
It is M0 for ' $\delta x=0$ ' $O R$ ' $\delta x \approx 0$ ' OR' δx is so small we can forget about it'.
All of the above marks can be gained even if there is no l.h.s. shown.
Final A1. Must be for a 'text book' quality presentation. E.g.
Has to be a correct l.h.s. for each line, ' δy ' or ' $\delta y / \delta x$ '

$$
\text { AND at some point }{ }^{\prime} d y / d x=\underset{\delta x \rightarrow 0}{\lim \delta y / \delta x} \text { ' or } ' d y / d x=\underset{\delta x \rightarrow 0}{\lim 2 x}+\delta x+7 \prime
$$

