

GCSE MARKING SCHEME

SUMMER 2019

ADDITIONAL MATHEMATICS 9550/01

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE ADDITIONAL MATHEMATICS

SUMMER 2019 MARK SCHEME

		Mark	Comment
1	(a)(i)(9x+5)(3x-1)	B2	Mark final answer. Ignore inclusion of '=0"
			B1 $(9x \pm 5)(3x \pm 1)$ or $9x(3x - 1) + 5(3x - 1)$ or or $(x - 1/3)(27x + 15)$ or $(27x - 9)(27x + 15)$ or 27
			sight of $(9x + 5)$ AND $(3x - 1)$
	(ii) -5/9 with 1/3 or equivalent or -0.55(5) or -0.556 with 0.33(3)	B2	If a restart in (ii) to factorise, do not alter marking in (i), unless the candidate is clearly replacing their answer (i) Ignore sight of "=0"
			Must be from factorising. STRICT FT for their factors. B1 for each answer
	_		Do not accept from the use of the quadratic formula
	(b)(i) $(x+5)^2 \pm \dots + 10$	B1 B1	Sight of $(x+5)^2$. Ignore sight of '=0'
			Do not accept '= -10' or '=10'
			$(x + 5)^2 + 10$, B1, B1 ISW Allow +35 -25 for 10 provided 10 seen in later working
	(ii) Least value (+)10	B1	Must follow completing the square
			FT their value but not 35 or - 10
	(iii) $(x =) -5$	B1	FT from 'their $(x + 5)^2$ ' Do not accept (-5, 10)
	(c) $(x - 22/2)^2 - 121 = -5$ or $(x - 22/2)^2 - 121 + 5 = 0$	M1	Allow for sight of $(x - 22/2)^2 - 121 + 5$ or $(x - 22/2)^2$ -
	$(x-11)^2 = 121-5$	M1	116
	$x = 11 \pm 2\sqrt{29}$	A2	FT from 1 slip, e.g. for sight of $(x-11)^2 = 126$ or
			$(x-11)^2 - 126 = 0$
			Allow A2 for $x = 11 \pm \sqrt{116}$ ISW A1 for $11 + \sqrt{116}$ or $11 + 2\sqrt{29}$ or
		12	11 - $\sqrt{116}$ or 11 - $2\sqrt{29}$ or FT 11 $\pm \sqrt{126}$ or 11 $\pm 3\sqrt{14}$
		12	No working in (c), no marks
2	(a) $40x^3 + 6x (+0)$	В3	Penalise '+c' shown -1 only throughout B1 for 40x³ (not 10×4x³), B1 for +6x (not 3×2x), and B1 for +0 (or blank) provided at least 1 other mark
			awarded. Mark final answer
	(b) $-22x^{-12}$ or $-\frac{22}{x^{12}}$	B1	
	(c) $\frac{x^{1/2}}{8x^{1/8}}$ or $\frac{7}{8x^{1/8}}$	B1	Mark final answer
	8x ^{1/8}	5	Index needs to be simplified. Mark final answer
		J	

3		M1	Attempt to use common denominator, may be implied by sight of $55(x)$ -22(x+3) + 10(x+5) without sight of /110
			May be seen in stages
	$\{55(x) -22(x+3) + 10(x+5)\}\$ (/110)	B1	
			Or equivalent. May be seen in stages, as intention of method
	$\{55x-22x-66+10x+50\}$ (/110)	B1	
	$(43x - 16)/110$ or showing LHS \equiv RHS	A1	B1 for 1 slip (e.g. +66). Must be as a sum of 5 terms. Convincing must follow from fully correct working at each stage
			Allow following sight of 3 separate correct fractions with denominator 110 seen
			If no denominator then possible M1 (see note above),
			B1 B1 A0, however if denominator replaced later all
		4	marks are allowable
4	(a) $(y+\delta y =)$ $(x+\delta x)^2 + 7(x+\delta x) + 2$	B1	Or alternative notation. Allow if final bracket omitted
	Intention to subtract (y=) x^2+7x+2 to find	M1	
	δγ	A1	Accept δx^2 as meaning $(\delta x)^2$
	$(\delta y =) 2x\delta x + (\delta x)^2 + 7\delta x$	M1	FT equivalent level of difficulty
	Dividing by δx and (lim) $\delta x \rightarrow 0$	A1	CAO. Must follow from correct working and notation
	$dy/dx = \lim \delta y/\delta x = 2x$		All notation throughout the working must be correct in
	+7		order to award the final A1
	δx→0		Do not accept dy/dx = $\lim_{x\to 0} 2x + 7$ as a final answer
		5	Use of dy/dx throughout max 4 marks only, final A0

5	Overall strategy that could lead to finding	S1	Or full alternative strategy
	EĈB, e.g. length of 3 sides and then cosine		or run attendance strategy
	rule		
	$EC^2 = 6.2^2 + 3.7^2$	M1	$(EC^2 = 52.13, EC = 7.22cm)$
	$BC^2 = 2.5^2 + (8.4 - 6.2)^2$	M1	$(BC^2 = 11.09, BC = 3.33cm)$
	$EB^2 = 8.4^2 + 3.7^2 + 2.5^2$	M1	May be shown in stages
			(e.g. $BF^2 = 8.4^2 + 3.7^2$ then $EB^2 = 2.5^2 + BF^2$)
			$(EB^2 = 90.5, EB = 9.513cm)$
	With substituted values:	M2	OR alternative full method, e.g. finding angles BEC or
	$\cos E\hat{C}B = \frac{EC^2 + BC^2 - EB^2}{2}$	1012	EBC using cosine rule followed by use of sine rule with
	$\frac{EC + BC - EB}{2 \times EC \times BC}$		sin EĈB isolated
	i.e.		FT 'their derived lengths' provided at least 2 M marks
	$\cos E\hat{C}B = 52.13 + 11.09 - 90.5$ (= -		previously awarded
	0.567)		
	2 × 7.22 × 3.33		M1 for substituted values:
			$EB^{2} = EC^{2} + BC^{2} - 2 \times EC \times BC \times \cos E\hat{C}B$
			OR for alternative full method without sin EĈB
		A1	isolated
	EĈB = 124.56(°) or 124.6° or 125(°)	AI	CAO, must be from correct working
	LCD 124.30() 01 124.0 01 123()		Allow 124.4(°), 124.48(°), 124.5(°) or 125.39(°)
			or 125.4(°) from premature approximation
		QWC	() 1 "FF
	QWC2: Candidates will be expected to	2	QWC2 Presents relevant material in a coherent and
	 present work clearly, with words 		logical manner, using acceptable mathematical form,
	explaining process or steps		and with few if any errors in spelling, punctuation and
	AND		grammar.
	make few if any mistakes in		OWC1 Presents relevant material in a sale way 1
	mathematical form, spelling,		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of
	punctuation and grammar in their		mathematical form, spelling, punctuation or grammar
	answer		OR
	QWC1: Candidates will be expected to		evident weaknesses in organisation of material but
	• present work clearly, with words		using acceptable mathematical form, with few if any
	explaining process or steps		errors in spelling, punctuation and grammar.
	OR		
	 make few if any mistakes in 		QWC0 Evident weaknesses in organisation of material,
	mathematical form, spelling,		and errors in use of mathematical form, spelling,
	punctuation and grammar in their	0	punctuation or grammar.
6	final answer	9 M1	All: (C4)
6	(a) Multiplier $(6-\sqrt{3}) / (6-\sqrt{3})$	M1	Allow if the multiplier is stated as $(6-\sqrt{3})$ provided it is
	Denominator		used as $(6-\sqrt{3})/(6-\sqrt{3})$
	$36 + 6\sqrt{3} - 6\sqrt{3} - 3 \text{ OR } 36 - 3 \text{ OR } 33$	A1	
		A1	CAO. Mark final answer
	$\frac{12 - 2\sqrt{3}}{33}$		Unsupported answer is awarded no marks.
		P.1	
	(b)(i) $y^{1/5}/y^{3/4}$ or alternative correct 1st	B1	Or equivalent first stage of working with indices
	step	B1	CAO. Mark final answer
	$y^{-11/20}$ or $1/y^{11/20}$	M1	
	(ii) Correctly extracting $x^{2/7}$ as a factor, or	171 1	
	$\frac{x^{2/7}}{2x^{2/7}} + \frac{6x^{3/7}}{2x^{2/7}}$		
		A1	CAO. Mark final answer
	$\frac{1}{2} + 3x^{1/7}$ or $\frac{1 + 6x^{1/7}}{2}$	_	
	2	7	

7		1	
1	(a) $(3)^3 + 8(3)^2 - 2(3) + 6 (= 27 + 72 - 6 +$	M1	Or division method giving $x^2 + 11x$
	6) = 99	A1	
	- 99	M1	Or division method giving x^2 - $2x$
	(b)(i) Substitute $x = -3$	A1	Convincing from working shown (not if incorrect
	Showing $f(-3) = 0$	711	working seen), allow $(-3)^3 + (-3)^2 - 41(-3) - 105 = 0$,
	Showing I(-5)		also allow for sight of $-3^3 + -3^2 - 41 \times -3 - 105 = 0$
			provided no incorrect calculation is given such as -3 ² as
			-9
		M1	
	(ii) $(x + 3)(x^2 + bx + c)$		
	or intention to divide by $(x+3)$ with x^2		
	shown	A2	
	$((x+3)) (x^2-2x-35)$		A1 for -2x or -35.
		A1	Or use of factor theorem A1 $(x+5)$, A1 $(x-7)$
	((x+3))(x+5)(x-7)	8	CAO. Mark final answer, but ignore attempts to
	(1 /1) 12 2	D.1	'solve'
8	$(dy/dx=) 12x^2 - 6x$ $dy/dx = 0$ or $12x^2 - 6x = 0$ or $12x^2 = 6x$	B1 M1	FT their dy/dx form ax ² ± bx
	$dy/dx = 0$ or $12x^2 - 6x = 0$ or $12x^2 = 6x$ x = 0 and $y = 20$	A1	1 T I IICH UY/UX IOTHI AX = ± UX
	x = 0 and $y = 20x = \frac{1}{2} and y = \frac{1}{2}$	A1 A1	If A0, A0 here, award A1 for $x = 0$ with $x = \frac{1}{2}$
	$x - \frac{72}{2}$ and $y - \frac{19^{3}}{4}$	711	Answer only, no working shown M0 A0 A0
			22.0. or only, no norming shown into no no
		M1	Or first derivative test, interpretation of first derivative
	$d^2y/dx^2 = 24x - 6$		test. Or alternative (e.g. full graphical method with
	-		explanation)
		A1	FT for their x value
	$(0, (20))$: $d^2y/dx^2 < 0$, point is a	A1	FT for their other x value provided this does not have
	maximum		the same interpretation as the first x value
	$(\frac{1}{2}, (19\frac{3}{4}))$: $d^2y/dx^2 > 0$, point is a		1. 1. 10. 10. 10.
	minimum		Answer only, no working shown M0 A0 A0
			If $d^2y/dx^2 = cx + d$ where $c \neq 0$ and test applied correctly
			then SC2 instead of final A1, A1 (as M1 has not been awarded))provided one minimum and one maximum
		7	awaraea))providea one minimum ana one maximum
9	$\frac{\sqrt{3}}{\sqrt{3}} \times \underline{1} = \frac{\sqrt{3}}{\sqrt{3}}$	B1	Working must be shown
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$		
		II.	
		1	
10	(a) $FG^2 = (-4 - 8)^2 + (10 - 28)^2$	1 M1	Or equivalent. Allow 1 slip or error
10	$(=12^2+18^2=$	M1	Or equivalent. Allow 1 slip or error M1, A0 for answers √468 or 21.6(3)
10	$(=12^2 + 18^2 = 468)$		Or equivalent. Allow 1 slip or error M1, A0 for answers √468 or 21.6(3) CAO
10	$(=12^2+18^2=$	M1 A1	M1, A0 for answers $\sqrt{468}$ or 21.6(3)
10	$(=12^{2}+18^{2}=468)$ FG = $6\sqrt{13}$	M1 A1 M1	M1, A0 for answers √468 or 21.6(3) CAO
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84)	M1 A1	M1, A0 for answers $\sqrt{468}$ or 21.6(3)
10	$(=12^{2}+18^{2}=468)$ FG = $6\sqrt{13}$	M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$	M1 A1 M1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84)	M1 A1 M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) $(-4 + 8)/2$ or $(10 + 28)/2$	M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$	M1 A1 M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen
10	$(= 12^{2} + 18^{2} = 468)$ FG = $6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) $(-4 + 8)/2$ or $(10 + 28)/2$	M1 A1 M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19)	M1 A1 M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen
10	$(= 12^{2} + 18^{2} =$ 468) $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$	M1 A1 M1 A1 M1 A1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $y - 19 = -2 \qquad \text{or } 19 = -2/3 \times 2 + c$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an
10	$(= 12^{2} + 18^{2} =$ 468) $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found.
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $y - 19 = -2 \qquad \text{or } 19 = -2/3 \times 2 + c$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $y - 19 = -2 \qquad \text{or } 19 = -2/3 \times 2 + c$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found.
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $y - 19 = -2 \qquad \text{or } 19 = -2/3 \times 2 + c$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y - 19}{x - 2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b),
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y - 19}{x - 2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$ $y - 19 = -2/3(x - 2) \text{or } 3(y - 19) = -2(x - 2)$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT
10	$(=12^{2}+18^{2}=468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (=9/6 = 3/2)$ (c) (-4+8)/2 or $(10+28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y-19}{x-2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$ $y-19=-2/3(x-2) \text{or } 3(y-19) = -2(x-2)$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT for 'their perpendicular gradient' (not 'their answer')
10	$(= 12^{2} + 18^{2} = 468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (= 9/6 = 3/2)$ (c) (-4 + 8)/2 or $(10 + 28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y - 19}{x - 2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$ $y - 19 = -2/3(x - 2) \text{or } 3(y - 19) = -2(x - 2)$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT
10	$(=12^{2}+18^{2}=468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (=9/6 = 3/2)$ (c) (-4+8)/2 or $(10+28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y-19}{x-2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$ $y - 19 = -2/3(x-2) \text{or } 3(y-19) = -2(x-2)$ or $3y = -2x + 61$	M1 A1 M1 A1 M1 A1 B1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT for 'their perpendicular gradient' (not 'their answer')
10	$(=12^{2}+18^{2}=468)$ $FG = 6\sqrt{13}$ (b) Gradient FG (28-10)/(84) $= 18/12 (=9/6 = 3/2)$ (c) (-4+8)/2 or $(10+28)/2$ Mid point (2, 19) Perpendicular gradient -2/3 $(or -6/9 \text{ or } -12/18)$ $\frac{y-19}{x-2} = \frac{-2}{3} \text{or } 19 = -2/3 \times 2 + c$ $y - 19 = -2/3(x-2) \text{or } 3(y-19) = -2(x-2)$ or $3y = -2x + 61$	M1 A1 M1 A1 B1 M1	M1, A0 for answers √468 or 21.6(3) CAO Do not ignore incorrect cancelling, mark final answer Sight of (2,) or (, 19) implies M1 provided no incorrect working is seen FT -1/ 'their answer in (b)' OR for an alternative correct method of finding the equation of a straight line, for the idea of how an equation of a straight line can be found. FT 'their perpendicular gradient' or 'their answer in (b)' AND 'their mid point' or for 'points F or G' used Do not allow use gradient from their answer in (b), and/or points F or G as the mid-point of FG. Only FT for 'their perpendicular gradient' (not 'their answer' from (b)) AND 'their mid point'

			T
11	(a) Correct shaped graph with (0°,) 180° &	В3	Ignore outside the required range
	360° labelled on the x-axis AND 2, 7 & 12		1 () () () () () () () () () (
	labelled on the y-axis		Intention for approximately (0°, 7), (90°, 2), (180°, 7),
			(270°, 12) and (360°, 7)
			B2 awarded a for correct shape graph with conditions:
			• sinx reflected
			• with one complete period, labelled 0° to 360°
			with difference in y values between
			maximum and minimum of 10, for their
			labels
			OR
			B1 for a correct shape graph with any 2 of the 3 bullet
			points above met, OR
			B1 for a graph with all 3 bullet points above met but
			joined by straight lines (even if turning points curved),
			OR
	(1) 16 · · · · · · · · · · · · · · · · · ·	D1	B1 for a curved graph through intended points: (0°, 7),
	(b) Maximum value 12 AND	B1	(90°, 2), (180°, 7), (270°, 12) and (360°, 7)
	Minimum value 2		(270/0) 10) 115' (20/0) 2)
			Accept Maximum (270(°), 12) and Minimum (90(°), 2)
		4	Allow unsupported correct responses
		4	FT provided at least B2 previously awarded in (a)
12	(a) $(dy/dx=)$ $16x^7 + 8x$	B1	
12		B1	FT to 2^{nd} B1 from $dy/dx = kx^n (+)$
	(d y/dx -) 112x + 8	Di	11 to 2 B1 from dy/dx – kx (†)
	(b) $(5/5)$ $x^5 + (3/-1)$ $x^{-1} + (-2/-2)x^{-2}$	В3	B1 for each term. Accept unsimplified. ISW
	$(=x^5-3x^{-1}+x^{-2})$	D 3	BY for each term. Accept unsimplified. 15 W
	+ c	В1	Award if at least B1 given for integration
	(constant)	D 1	Tivala if at least B1 given for integration
	(Companie)	B2	B1 for $6x^2/2$ or $10x$
	(c) $6x^2/2 + 10x$	M1	Intention to use 3, 2 (in either order) and subtract
	$[6x^2/2 + 10x]^3$ and with intention to		FT their integration, not the same terms as given or
	substitute and subtract		differentiated, this includes if there is only 1 term seen.
		A1	FT for correct use of limits provided working with 2
	$=(6\times3^2/2+10\times3)-(6\times2^2/2+10\times2)$		terms from 'their integration'
	(= 57 - 32)		
		A1	CAO, not FT.
	= 25		Answer only, no working shown, M0 A0 A0
1.2	(11)	11 D1	
13	(When $x = 2$) $y = 27$	B1	F 1:664:-4:-4:
	(Gradient when $x = 2$, $dy/dx =) 5 \times 2x$	M1	For differentiation, before substitution of $x = 2$
	20	A1	
	Equation $y - 27 = 20$ or $27 = 20 \times 2 + c$	M1	FT values for 'their 27' and 'their 20' provided at least
	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}$	1011	one of these is correct.
	x-2 y-27 = 20(x-2) or c = -13	m1	Implies previous M1
	y = 27 - 20(x - 2) of $C = -13y = 20x - 13$	A1	CAO. Mark final answer
	y 20A 13	6	OTTO, IVIGIN THICH GHOWOL
14	Method to solve simultaneously, e.g. use of	M1	$2x + 1 = x^2 - 5x + 13$ or $y = (y - 1)^2 - 5(y - 1) + 13$
• '	y = 2x + 1 or $x = (y - 1)/2$ into the first		$2x + 1 = x^2 - 5x + 13$ or $y = \frac{(y-1)^2 - 5(y-1)}{2^2} + 13$
	equation		
	$x^2 - 7x + 12 = 0$ or $y^2 - 16y + 63 = 0$	A1	Or equivalent but must '=0' or implied in further
			working
	(x-3)(x-4) (=0) or $(y-9)(y-7)$ (=0)	m1	
			OR $x = (7 \pm \sqrt{1})/2$ or $y = (16 \pm \sqrt{4})/2$
	(3,7) and $(4,9)$	A1	FT from their quadratic
			CAO
			Need not be in this form, accept $x=3$, $y=7$ with $x=4$,
			y=9
			x & y values must be given
		4	Do not accept unsupported responses
			Do not accept trial & improvement

15	Working to support that (7, 10) and (2, -5) both lie on the curve	B2 2	Working, e.g. • substituting the x-values and correctly finding y-values • substituting coordinates for the points and showing "=55" (Allow sight of -5² in working provided -25 is not seen) B1 for either correct working for either point
16	Intention to integrate	M1	Intention to integrate (not using given or differentiated)
	$-x^3/3 + 8x^2/2 - 12x$ Use of correct limits 6 & 2 in the correct order and intention to subtract 32/3 or 10.66(6) or 10.7	A2 m1 A1	A1 one term correct. The limits must be used in the correct order CAO. Only allow 10.6 from correct working seen Answer only gets no marks No marks for use of the trapezium rule

<u>Differentiating from first principles.</u> Marking guide.

Q4.

4	(a) $(y+\delta y =)$ $(x+\delta x)^2 + 7(x+\delta x) + 2$	B1	Or alternative notation. Allow if final bracket omitted
	Intention to subtract (y=) x^2+7x+2 to find	M1	
	бу	A1	Accept δx^2 as meaning $(\delta x)^2$
	$(\delta y =) 2x\delta x + (\delta x)^2 + 7\delta x$	M1	FT equivalent level of difficulty
	Dividing by δx and (lim) $\delta x \rightarrow 0$	A1	CAO. Must follow from correct working and notation
	$dy/dx = \lim \delta y/\delta x = 2x +$		All notation throughout the working must be correct in
	7		order to award the final A1
	$\delta x \rightarrow 0$		Do not accept $dy/dx = \lim 2x + 7$ as a final answer
			x→0
			Use of dy/dx throughout max 4 marks only, final A0
		5	

B1 For sight of $(x+\delta x)^2 + 7(x+\delta x) + 2$ or $(x+h)^2 + 7(x+h) + 2$ or using alternative notation. This mark is given whether $(x+\delta x)^2 + 7(x+\delta x) + 2$ stands alone or is embedded in an expression or a formula.

M1 For the intent to subtract $x^2 + 7x + 2$ from the above.

So $(x+\delta x)^2 + 7(x+\delta x) + 2 - x^2 + 7x + 2$ will gain the M1 even though there are missing brackets.

It can also be awarded to those who have expanded $(x+\delta x)^2 + 7(x+\delta x) + 2$ and then crossed out the x^2 term and the +7x term and 2.

Those who reverse the subtraction will gain M0 <u>unless</u> there is evidence later on of dividing by $-\delta x$.

A1 For sight of $2x\delta x + (\delta x)^2 + 7\delta x$ (Accept δx^2 as meaning $(\delta x)^2$) with no other terms. Treat as a CAO.

 $2x + \delta x + 7$ will imply the above if division by δx has already been done.

M1 A FT, if of equivalent difficulty, is possible for this M1 (but not the subsequent A1).

A <u>correct</u> division by δx has to be done

(so if a FT it has to be correct for their $2x\delta x + (\delta x)^2 + 7\delta x$)

AND we must see ' $\lim \delta x \rightarrow 0$ ' OR ' $\delta x \rightarrow 0$ ' OR ' δx tends to 0'.

It is M0 for ' $\delta x = 0$ ' OR ' $\delta x \approx 0$ ' OR ' δx is so small we can forget about it'.

All of the above marks can be gained even if there is no l.h.s. shown.

Final A1. Must be for a 'text book' quality presentation. E.g.

Has to be a correct l.h.s. for each line, ' δy ' or ' $\delta y/\delta x$ '

AND at some point 'dy/dx =
$$\lim \delta y/\delta x$$
' or 'dy/dx = $\lim 2x + \delta x + 7$ ' $\delta x \rightarrow 0$ $\delta x \rightarrow 0$