WJEC LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

MARK SCHEME

	WJEC Level 2 Certificate in	Mark	Comments
	Additional Mathematics	Maik	
	Specimen Paper		
1	(a)(i) 125 81	B2	B1 for either 125 or $\frac{1}{81}$ or $\frac{5^3}{3^4}$
	(ii) Sight of 16^{-1} or 2^{-4} or $1/(2^4)$		Answer only, no working shown, B0
	AND 1/16	В1	Answer only, no working shown, B0
	(b) (i) $\frac{20y^{\frac{3}{4}}}{y^{\frac{3}{4}}}$	B1	
	20	B1 B1	CAO
	(ii) $\frac{x^{\frac{1}{3}}(2+5x)}{4x^{\frac{1}{3}}}$		CAO
	$\frac{2+5x}{4}$	B1	CAO
2	(a) $3(-2)^3 - (-2)^2 + 5(-2) + 42$	7 M1	Or division method giving $3x^2 - 7x$
	= 4	A1	
	(b)(i) Substitute $x = 4$	M1 A1	Or division method giving $2x^2 + 5x$
	showing = 0 (ii) $(x-4)(2x^2 + bx + c)$	AI	
	or intention to divide by $(x-4)$ with $2x^2$ shown	M1	
	$(x-4)(2x^2+5x-3)$	A2	A1 for $+5x$ or -3 . Or use of factor theorem
	(x-4)(2x-1)(x+3)	A1	A1 $(x + 3)$, A1 $(2x - 1)$ CAO. Penalise further working.
	(x-1)(2x-1)(x+3)	7 1 1	If no marks B1 for $(x + 3)$ or $(2x - 1)$
		8	
3	(a) $35x^4 + 1 (+0)$ (b) $-6x^{-7}$	B3 B1	B1 for each term. Accept 5×7 as 35
	$(c) \frac{2}{3} x^{-1/3}$	B1	Index needs to be simplified
		5	•
4	$\tan 30 = 5/BF$ or $\tan 45 = 5/FC$ or $FC = 5$	M1	(F is the foot of the perpendicular from A)
	Sight of $tan 30 = 1/\sqrt{3}$ (BF + FC =) 5/ $tan 30 + 5/tan 45$	B1 M1	OR equivalent, 5/tan30 + 5
	$5\sqrt{3} + 5 = 5(\sqrt{3} + 1)$	Al	Convincing
		4	
5	$(dy/dx=) 3x^2 - 3$ $dy/dx = 0$ or $3x^2 - 3 = 0$	B1	ET their du/dy form or 2 + h
	$dy/dx = 0$ or $3x^2 - 3 = 0$ x = 1 or $x = -1$	M1 A1	FT their dy/dx form $ax^2 + b$
	y = -4 or $y = 0$	A1	FT their <i>x</i> substitution
	$d^2y/dx^2 = 6x$	M1	Answer only, no working shown, M0 A0 A0 Or first derivative test, interpretation of first derivative
	$(-1, 0)$: $d^2y/dx^2 < 0$, point is a maximum	A1	test. Or alternative.
	$(1, -4)$: $d^2y/dx^2 > 0$, point is a minimum	A1	
	2	7	
6	$x^2 + xy = 198$	B1	
	6x + 2y = 80 or $3x + y = 40x^2 + x(40 - 3x) = 198$	B1 M1	FT for their equations
	$2x^2 - 40x + 198 = 0$ or $x^2 - 20x + 99 = 0$	Al	CAO or negative of either quadratic
	(x-9)(x-11) = 0 or equivalent	M1	Factorising their quadratic or formula method
	x = 9 (or 11) Other length 13 (cm)	A1 B1	CAO FT their <i>x</i> or <i>y</i> value for shortest side logic
	Outer length 13 (cm)	7	1 1 then x of y value for shortest side logic
		. ,	

	WJEC Level 2 Certificate in		Comments
	Additional Mathematics	Mark	Comments
	Specimen Paper		
7	_		Intention to integrate
'	$\int (2x - x^2) \mathrm{d}x$	M1	Do not penalise dx omitted. Limits not required
	$= x^2 - x^3/3$	A2	A1 for each
	Use of correct limits in order		
	Ose of correct mints in order	m1	
	4/3	A1	CAO
		_	No marks for use of trapezium rule
8	Attempt to clear fractions	5 M1	For initial correct idea, including expressing all terms
6	2(x-2) + 4(2x+3)(x-2) = 4x(2x+3)	Al	over common denominators (allow a slip)
	-28 = 14x	A1	FT the one slip
	x = -2	A1	1
		4	
9	(a)(4x-3)(3x+5)	B2	B1 for $(4x-3)$, B1 for $(3x+5)$
	$\frac{3}{4}$ or $-\frac{5}{3}$	B2	FT for their factors. B1 for each answer
	(b) $(x + 8)^2 \pm \dots -64 (+3)$	B1 B1	Sight of $(x + 8)^2$ Sight of -64, or implied (e.g by = 64)
	04 (+ 3) Least value -61	B1	CAO
	Least value –01	7	CAO
10	Area square base = x^2	B1	
	Area triang. side = $\frac{1}{2}x^2 \sin 60$ or $\frac{1}{2}x\sqrt{(x^2-(x/2)^2)}$	M1	Or equivalent, e.g. tan to find height, tan60.x/2
			followed by $\frac{1}{2}x$. tan60. $x/2$
	$x^2/2$. $\sqrt{3}/2$ or $\sqrt{2} \times \sqrt{(3x^2/4)}$	A1	Or equivalent, e.g. $\frac{1}{2}x$. $\sqrt{3}.x/2$
	Total surface area = $x^2 + 4(x^2\sqrt{3})$	B1	FT their $x^2 + 4 \times$ area of triangular side
	Total surface area = $x^2 + \frac{4(x^2\sqrt{3})}{4}$ = $x^2 (1 + \sqrt{3})$	A 1	CAO
	$-x(1+\sqrt{3})$	A1 5	CAO
11	Attempt dy/dx , one term correct	M1	
* *	$\frac{dy}{dx} = 3x^2 - 6x$	A1	
	at x = -1 gradient = 9	A1	FT equivalent level of difficulty
	when x = -1 y = -2	B1	
	Equation $(y2) = 9(x1)^{-1}$	m1	Or alternative method of setting up the equation
			FT their value of gradient & point only if M1
	y + 2 = 9(x + 1) ISW $(y = 9x + 7)$	A1	awarded. Depends on use of calculus CAO. Any form
	y + 2 = 9(x + 1) + 13 $y + 2 = 9(x + 1)$	6	CAO. Ally lottil
12	(a) $PQ^2 = (14-2)^2 + (19-3)^2 = (12^2 + 16^2)$	M1	Allow 1 slip or error
	$PQ = \sqrt{400} (=20)$	A1	CAO
	(b) Grad. PQ $(19-3)/(14-2)$	M1	
	= 16/12	Al	Ignore incorrect cancelling throughout (b)
	Grad. perpendicular -12/16	B1	FT –1/grad PQ. Do not accept fraction of fraction
13	(a) $y + \delta y = (x + \delta x)^2 - (x + \delta x)$	5 M1	Or alternative notation. Allow if final bracket omitted
13	Intention to subtract $(y =) x^2 - x$ to find δy	m1	of anomative notation. Thiow it final pracket offitted
	$\delta y = 2x\delta x + (\delta x)^2 - \delta x$	Al	Accept δx^2 as meaning $(\delta x)^2$
	$\delta y/\delta x = 2x + \delta x - 1 \text{ and } \lim \delta x \rightarrow 0$	M1	FT equivalent level of difficulty
	$\frac{dy}{dx} = 2x - 1$	A1	CAO. Must follow from correct working
	·		Use of dy/dx throughout max 4 marks only, final A0
	(b) $2x - 1 = 3$	M1	FT from their response in (a)
	x = 2	A1	
		7	

	WJEC Level 2 Certificate in Additional Mathematics	Mark	Comments
	Specimen Paper		
14	(a) General sine curve through (0,0), y values ±2 Period clearly 120° (b) 70°, 110° only	B1 B1 B3	B2 for any 1 correct, B1 for indication of 2 values on their graph or sight of -10° or 210° or 330°
15	Grad. given line = -4 so perpendicular grad. = $\frac{1}{4}$ Equation $y = \frac{1}{4}x$ OR $4y = x$ Clues needed 1 and 3	B1 B1 B1 QWC2	FT -1/their gradient, or their perpendicular gradient (with slip) with c = 0 Implied in working or embedded in strategy QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and
16		5 M1	with few if any errors in spelling, punctuation and grammar. QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar. Attempt to use common denominator
	${6(2x) + 5(x-1) + 3(3x+5)}/{30}$ ${12x + 5x - 5 + 9x + 15}/{30} = {26x + 10}/{30}$ and $(13x + 5)/{15}$ or showing LHS = RHS	A1 A2 4	Or equivalent (e.g. all/60) A1 for 1 slip or no conclusion
17	(a) $\frac{3}{5}x^5 + \frac{2}{3}x^{\frac{3}{2}} - \frac{1}{x} + c$ (constant)	B3 B1	B1 for each term (Accept unsimplified $+-x^{-1}$ ISW)
	(b) $\frac{x^4}{4} + 2x$	B2	B1 for $\frac{x^4}{4}$ or $2x$
	$\left[\frac{x^4}{4} + 2x\right]_1^2$	M1	FT their integration. Intention to use 2, 1 and subtract
	$\left(\frac{2^4}{4} + 2(2)\right) - \left(\frac{1^4}{4} + 2(1)\right)$	m1	FT for correct use of limits
	$=$ $\frac{23}{4}$ $(=5\frac{3}{4})$	A1 9	CAO, not FT Answer only, no working, M0 m0 A0