шјес cbac

GCSE MARKING SCHEME

AUTUMN 2021

GCSE
MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2021 MARK SCHEME

Unit 2: Higher Tier	Mark	Comments
1. (Height) 1.18×1.5 or equivalent $\begin{array}{ll}\text { (Area of skin) } & 1.77(\mathrm{~m}) \\ 1.9\left(\mathrm{~m}^{2}\right)\end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	CAO. Ignore any units given CAO. Ignore any units given
$\text { 2(a) } 37+34+20+28+21$		Allow M1 for - any 4 of the 5 readings correct in a sum of 5 non-zero readings, or - for a total ($\neq 140$ but) 140 ± 2 - total of 140 seen with further working with 'their' final answer = 140 Mark final answer
$\begin{aligned} & \text { 2(b) } \\ & 10 \text { (seconds) to } 15 \text { (seconds) } \end{aligned}$	B2	Allow if considering the $0.5(\mathrm{n}+1)$ th term throughout FT 'their 140' provided 'their 140' > 100 throughout Not from incorrect working Allow for an inclusive or exclusive range of times B1 for any of the following: - appropriate sight of 70 or $140 \div 2$ - the answer 12.5 seconds
2(c) Selects or unambiguously implies 'Yes' with a reason, e.g. 'no students in group 30 to 35 seconds', 'last students started in 25 to 30 second range'	E1	Allow the term 'finished' as meaning 'finished starting the task', e.g. 'Yes' with 'no student finished after 30 seconds' Allow, 'yes' with a reason, e.g. 'all students started before 30 seconds', 'data stopped after 30 seconds', 'no students in the last group' Allow selection of 'Can't tell' with a reason based on thinking 30 seconds may be included in the group 25 to 30 , so some students could have taken exactly 30 seconds to start and not started within 30 seconds, that is thinking 'within 30 seconds' does not include '30 seconds' Do not accept 'Yes' with a reason, e.g. 'no students after 27.5 seconds', 'all students between 27.5 and 32.5 seconds could start within 30 seconds'
	M1	FT 'their derived 140' from (a) provided >100 with numerator 37 or 'their 37 ' if seen in (a) Accept $0.26(\ldots$.$) only if 0.25$ is seen

$\begin{array}{ccc}\text { 3. (To spend on \$) } & \text { OR } \\ 13 / 20 \times 500 & \text { (Convert to \$) } \\ 500 \times 1.36\end{array}$

$$
=(£) 325 \quad=(\$) 680
$$

(Buying \$) $13 / 20 \times 500 \times 1.36$

$$
\text { (\$) } 442
$$

(As lowest note $\$ 5$ can only buy) (\$) 440
(This will cost) $440 \div 1.36$

$$
\begin{array}{ll}
\text { or } & 13 / 20 \times 500-(442-440) \div 1.36 \\
\text { or } & 325
\end{array}
$$

(£) 323.53 or ($£$) $323.52(9 \ldots)$
(Money left to buy euros $500-323.53$) (£)176.47

3. Alternative method:	
(To spend on \$) OR	
13/20 $\times 500$	(Convert to \$) $=(£) 325$
500×1.36 $=(\$) 680$	

(Buying \$) $13 / 20 \times 500 \times 1.36$
(\$) 442
(As lowest note $\$ 5$ can only buy) (\$) 440
($\$ 2$ is worth) $(442-440) \div 1.36$ or $2 \div 1.36$
(£) 1.47(05..)
(Money left to buy euros $500-325+1.47$) (£) 176.47

M1 FT 'their derived 442' and 'their derived 440' provided it is a multiple of 5
May be embedded in further calculation
FT 'their incorrectly evaluated $13 / 20 \times 500$ '

Allow equivalent given unambiguously in possible notes
FT 'their derived 442 ' rounded down to the nearest multiple of 5
If (\$)442 in the answer space, only award if clearly showing 'buying \$440'

FT provided to the nearest penny
Do not FT from incorrect rounding of 'their £323.52(9...)'
Note: $500-323.52=(£) 176.48$ is A0
If unambiguous and clear correct response seen in working, ignore a slip in transferring (£)176.47 to the answer space.
Ignore answers reversed in the answer space

May be embedded in further calculation
FT 'their incorrectly evaluated $13 / 20 \times 500$ '

Allow equivalent given unambiguously in possible notes
FT 'their derived 442 ' rounded down to the nearest multiple of 5
May be implied by use of $\$ 2$
FT 'their derived 442' and 'their derived 440' provided it is a multiple of 5

FT provided to the nearest penny Do not FT from incorrect rounding of 'their £1.47(05...)'

If unambiguous and clear correct response seen in working, ignore a slip in transferring (£)176.47 to the answer space.
Ignore answers reversed in the answer space

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. (Volume of a jug) \(\pi \times 5^{2} \times 28\) \\
Answer in the range \(2198\left(\mathrm{~cm}^{3}\right)\) to \(2200\left(\mathrm{~cm}^{3}\right)\) \\
or \(700 \pi\left(\mathrm{~cm}^{3}\right)\) \\
(Number of jugs needed) \(170 \times 80 \div 2199\).(...) \\
6.1 (\(84 \ldots\) jugs) or 6.2 (jugs) or 6 (jugs) 3 (full jugs left over)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
May be implied in further working \\
FT 'their derived volume of a jug' provided
\[
>\text { 'their } 170 \times 80 \prime \div 10
\] \\
FT 10 - 'their 6.18...' (depends on previous M1) \\
Note: For final M and A marks, allow if found from listing the capacity of a number of jugs
\end{tabular} \\
\hline \begin{tabular}{l}
4. Alternative method 1: \\
(Volume of 10 jugs) \(10 \times \pi \times 5^{2} \times 28\) \\
Answer in the range \(21980\left(\mathrm{~cm}^{3}\right)\) to \(22000\left(\mathrm{~cm}^{3}\right)\) or \(7000 \pi\left(\mathrm{~cm}^{3}\right)\) \\
(Volume left over \(=\) volume 10 jugs -80 servings)
\[
=10 \times \pi \times 5^{2} \times 28-80 \times 170
\] \\
(Number of jugs left over) \(8380 \div 2199 .(\ldots)\) \\
3 (full jugs left over)
\end{tabular} \& M1
A1
M1
M1

m1

A1 \& | May be implied in further working $(=21980-13600)$ |
| :--- |
| FT 'their derived volume of 10 jugs' provided $>\text { 'their } 170 \times 80 \text { ' }$ |
| (Note: Correct answer is the range 8380 to $8394 \mathrm{~cm}^{3}$) (= 3.81...) |
| FT 'their derived volume of 10 jugs' provided $>\text { 'their } 170 \times 80 \text { ' }$ |
| Note: For final M and A marks, allow if found from listing the capacity of a number of jugs |

\hline | 4. Alternative method 2: |
| :--- |
| (Volume of a jug) $\pi \times 5^{2} \times 28$ |
| Answer in the range $2198\left(\mathrm{~cm}^{3}\right)$ to $2200\left(\mathrm{~cm}^{3}\right)$ or 700π (cm^{3}) |
| (Number of jugs left over) $10-80 \div(2199 .(.) \div$.170) (= $10-80 \div 12.935 \ldots$...) | \& M1

A1

M2 \& | May be implied in further working |
| :--- |
| FT 'their derived volume of a jug' provided $>$ 'their $170 \times 80 ' \div 10$ |
| M1 for sight of $80 \div(2199 .(. .) \div 170) \quad(=6.1(84 \ldots))$ |
| Do not allow A1 from truncation of 12.9(...) to 12 |

\hline | 4. Alternative method 3: |
| :--- |
| (Volume of 10 jugs) $10 \times \pi \times 5^{2} \times 28$ |
| Answer in the range $21980\left(\mathrm{~cm}^{3}\right)$ to $22000\left(\mathrm{~cm}^{3}\right)$ or $7000 \pi\left(\mathrm{~cm}^{3}\right)$ |
| (Number of glasses not needed) $10 \times \pi \times 5^{2} \times 28 \div 170-80$ |
| (Number of jugs left over) $\begin{aligned} & \quad 49.29 \ldots \div(2199 .(\ldots) \div 170) \\ & \text { or } \quad 49.29 \ldots \div 12.9 \ldots \end{aligned}$ |
| 3 (full jugs left over) | \& | M1 |
| :--- |
| A1 |
| M1 |
| m1 |
| A1 | \& | May be implied in further working $(=21980 \div 170-80=49.29 \ldots)$ |
| :--- |
| FT 'their derived volume of 10 jugs' > 'their 170×80 ' $\text { (= } 3.81 \ldots)$ |
| $F T$ 'their $10 \times \pi \times 5^{2} \times 28 \div 170-80$ ' |
| Do not allow A1 from truncation of 12.9(...) to 12 |

\hline Organisation and communication \& OC1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each |
| step of their response |
| - lay out their explanations and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W 1 , candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc. |

\hline
\end{tabular}

5(a) (Length $\left.{ }^{2}=\right) 4.2^{2}+1.1^{2}$	M1	Or alternative full method
Length $^{2}=18.85$ or (Length $=$) $\sqrt{ } 18.85$	A1	
(Length) $\quad 4.3(416 \ldots \mathrm{~m})$	A1	FT from M1, A0 for the correctly evaluated square root of 'their 18.85' provided 'their answer' >4.2 (m) If 4.3(4...) not seen, this A1 may be implied by the sight of choice of panel $4.4(\mathrm{~m})$ Do not accept an unsupported answer of 4.3 (m)
Selects 4.4 m length	A1	May be implied by use of $£ 24$ in further working FT where possible the length immediately > 'their 4.3416...' provided M1 previously awarded and 'their 4.3416...' has not been rounded down or truncated to give a different length from the table
(Number of panels needed is) 7 (panels)	B1	Allow B1 for 8 (panels) (thinking overlap may be as much as approximately $1 / 4$ of the width of a panel) Do not award B1 for 7 or 8 panels if incorrect logic from misinterpretation seen, e.g. working with area $26.05 \mathrm{~m}^{2}$ so buy 7 of the 4.1 m panels with area $28.7 \mathrm{~m}^{2}$
(Cost of the shelter roof £24 $\times 7$ 7) ${ }^{\text {(£) } 168}$	B1	FT provided B1 previously awarded FT 'their derived 4.4 ' provided $>4.2 \mathrm{~m}$
		4.3 m 23×7 $(£) 161$
		4.5 m 25×7 (£) 175 1.6 m 26×7 ()
		4.6 m 26×7 (£)182
		Allow for 8 panels:
		4.3 m 23×8 (£)184
		4.4 m 24×8 (£)192
		4.5 m 25×8 (£)200
		4.6 m 26×8 $(£) 208$
$\begin{equation*} 5(\mathrm{~b}) \text { tan angle between roof and wall }=\frac{4.2}{1.1} \tag{} \end{equation*}$	M1	Or alternative full method
	A3	Ignore incorrect units Must be to 3 significant figures A2 for 75.32(3... ${ }^{\circ}$) or 75(${ }^{\circ}$) OR A1 for $\tan ^{-1} \frac{4.2}{1.1}$
		From an alternative full method, award A2 maximum for 'their accurate answer' with errors due to rounding or truncation in stages of working, if the final answer is given correct to 3 significant figures, or A1 otherwise Note: Use of tan angle between roof and wall $=1.1 / 4.2$ is awarded MO AO If no marks, award SC1 for 'their derived angle' given correctly to 3 significant figures ($\tan ^{-1} 1.1 / 4.2=14.7\left({ }^{\circ}\right)$ to 3 significant figures)

$\begin{aligned} & \text { 6(a) (Arc length }=) \frac{145}{360} \times \pi \times 3 \times 2 \quad \text { or equivalent } \\ & \quad(=29 \pi / 12 \text { or } 7.58 \text { to } 7.6) \\ & +1.5+1.5+4+4 \\ & \end{aligned}$	M2 m1 A1	M1 for $\frac{145}{360} \times \pi \times 3$ or equivalent $(=29 \pi / 24 \text { or } 3.79 \text { to } 3.8)$ FT from M1 CAO. Accept an answer of $29 \pi / 12+11$ Allow a final answer of $19(\mathrm{~cm})$ provided 18.58 to 18.6 seen
$\begin{aligned} & \text { 6(b)(i) (Area of sector }=) \\ & \begin{aligned} \frac{145}{360} \times \pi \times 1.5^{2}(\times 2) & \\ & +29 \pi / 16 \text { or } 5.68 \text { to } 5.7) \\ & +4 \times 1.5 \\ & =11.6(9 \ldots) \quad\left(\mathrm{cm}^{2}\right) \end{aligned} \end{aligned}$	M1 m1 A1	$\frac{145}{360} \times \pi \times 1.5^{2} \quad(=29 \pi / 32 \text { or } 2.84(5 \ldots) \text { to } 2.85)$ CAO. Accept values in the range 11.68 to $11.7\left(\mathrm{~cm}^{2}\right)$ Accept an answer of $29 \pi / 16+6$ Allow a final answer of 11.6 Allow a final answer of $12\left(\mathrm{~cm}^{2}\right)$ provided 11.6 or values from 11.68 to 11.7 seen
$\begin{array}{rrr} 6\left(\text { (b)(ii) } 11.6(9 \ldots) \times 200^{2}\right. & & \\ \div 100^{2} \quad & \text { or equivalent } \\ & =46.7(765 \ldots) \quad\left(\mathrm{m}^{2}\right) \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \\ & \mathrm{~A} 1 \end{aligned}$	FT 'their 11.6(9...)' from (b)(i) Accept values in the range 46.7 to 46.8 Accept an answer of $29 \pi / 4+24$ Allow a final answer of 46.4 (from use of 11.6) Allow $47\left(\mathrm{~m}^{2}\right)$ from correct working If no marks awarded, then 'their 11.6(9...)' $\times 4$ with a place value error implies M1m0A0
6(b)(ii) Alternative method 1: (Area of sector =) $\begin{aligned} \frac{145}{360} \times \pi \times 300^{2}(\times 2)+ & 800 \times 300 \\ \div 100^{2} \quad & \text { or equivalent } \\ & =46.7(765 \ldots) \quad\left(\mathrm{m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	$\frac{145}{360} \times \pi \times 300^{2} \times 2=227650 \text { to } 227795$ CAO. Accept values in the range 46.7 to 46.8 Accept an answer of $29 \pi / 4+24$ Allow $47\left(m^{2}\right)$ from correct working
6(b)(ii) Alternative method 2 : $\begin{aligned} &\text { (Area of sector }=) \begin{aligned} \frac{145}{360} \times \pi \times 3^{2} & (\times 2) \\ & +8 \times 3 \\ & =46.7(765 \ldots) \quad\left(\mathrm{m}^{2}\right) \end{aligned} \\ & \\ & \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	$\frac{145}{360} \times \pi \times 3^{2} \times 2=22.765 \text { to } 22.8$ CAO. Accept values in the range 46.7 to 46.8 Accept an answer of $29 \pi / 4+24$ Allow $47\left(m^{2}\right)$ from correct working
$\begin{aligned} & \text { 6(c) } \\ & \begin{array}{ccc} \text { (£) } 9.72 & & \\ & \div 0.9 \quad \text { OR } \div 90 \times 100 \quad(=(£) 10.8(0)) \\ \div 0.8 & \text { OR } \div 80 \times 100 \end{array} \\ & \\ & \end{aligned}$	M1 M1 A1	These M1 marks may be awarded in any order The intermediate answer if done in reverse order is (£)12.15 OR M2 for $9.72 \div 0.72$ CAO If no marks awarded, SC1 for an answer of ($£$)13.88 or ($£$)13.89 (from $9.72 \div 0.7$)

\begin{tabular}{|c|c|c|}
\hline 7(a) 225° \& B1 \&

\hline \& M2

A1
M1

A1 \& | M1 for $A C^{2}=215^{2}+165^{2}-2 \times 215 \times 165 \times \cos 69\left({ }^{\circ}\right)$ or M1 for $\mathrm{AC}^{2}=48023(.7 \ldots)$ |
| :--- |
| FT 'their $219(.1 \ldots$)' provided sine/cosine rules attempted |
| Ignore a subsequent attempt to convert units |

\hline $$
\begin{aligned}
& \text { 7(b)(ii) } \begin{array}{c}
\begin{array}{c}
\sin ^{-1}\left(\frac{\sin 69\left({ }^{\circ}\right) \times 165}{219(.1 \ldots)}\right) \\
(B A C=) \\
\cos ^{-1}\left(\frac{215^{2}+219(.1 \ldots)^{2}-165^{2}}{2 \times 215 \times 219(.1 \ldots)}\right)
\end{array} \\
\\
=44.6 \text { to } 44.7\left({ }^{\circ}\right) \text { or } 45\left(^{\circ}\right)
\end{array} \\
& \begin{array}{r}
\text { (Bearing =) } 360-(180-114-44.6(6 \ldots))^{\prime} \\
\text { or } 360-(21.3(\ldots) \text { to } 21.4)
\end{array} \\
&
\end{aligned}
$$ \& M2

A1
M1

A1 \& | FT 'their 219(.1...)' |
| :--- |
| If their speed from (b)(i) is used for 'their 219(.1...)' then FT for a possible M2AOMOAO only M1 for |
| - $\frac{\sin B A C}{165}=\frac{\sin 69\left({ }^{\circ}\right)}{219(.1 . .)}$ or $\frac{165}{\sin B A C}=\frac{219(.1 \ldots)}{\sin 69\left({ }^{\circ}\right)}$ or |
| - $\sin B A C=\left(\frac{\sin 69\left({ }^{(}\right) \times 165}{219(1 . .)}\right)$ or |
| - $165^{2}=215^{2}+219(.1 \ldots)^{2}-2 \times 215 \times 219(.1 \ldots) \times \cos B A C$ or |
| - $\cos B A C=\left(\frac{215^{2}+219(.1 \ldots)^{2}-165^{2}}{2 \times 215 \times 219(.1 . .)}\right)$ |
| FT 'their derived 44.6(6...)' |
| Or full alternative method starting with the calculation of ACB |
| Allow 338.6(6...) to $338.7\left({ }^{\circ}\right)$ |

\hline 7(b)(ii) Alternative method:

$$
\begin{aligned}
& (A C B=) \sin ^{-1}\left(\frac{\sin 69\left({ }^{\circ}\right) \times 215}{219(1 \ldots)}\right) \quad \text { or } \\
& \quad \cos ^{-1}\left(\frac{165^{2}+219(\cdot 1 \ldots)^{2}-215^{2}}{2 \times 165 \times 219(\cdot 1 \ldots)}\right)
\end{aligned}
$$

$$
\begin{gathered}
=66.3 \text { to } 66.43\left(^{\circ}\right) \text { or } 66\left(^{\circ}\right) \\
(\text { Bearing }=) 360-(66.3(\ldots)-(114-69)) \\
\text { or } 360-(66.3(\ldots)-45)
\end{gathered}
$$ \& M2

A1
M1

A1 \& | FT 'their 219(.1...)'. |
| :--- |
| If their speed from (b)(i) is used for 'their 219(.1...)' then FT for a possible M2AOMOAO only M1 for |
| - $\frac{\sin A C B}{215}=\frac{\sin 69\left({ }^{\circ}\right)}{219(.1 \ldots)}$ or $\frac{215}{\sin A C B}=\frac{219(.1 \ldots)}{\sin 69\left({ }^{\circ}\right)}$ or |
| - $\sin A C B=\left(\frac{\sin 69\left({ }^{\circ}\right) \times 215}{219(1 . . .)}\right)$ or |
| - $215^{2}=165^{2}+219(.1 \ldots)^{2}-2 \times 165 \times 219(.1 \ldots) \times \cos A C B$ or |
| - $\cos A C B=\left(\frac{165^{2}+219(\cdot 1 . .)^{2}-215^{2}}{2 \times 165 \times 219(.1 . .)}\right)$ |
| FT 'their derived 66.3(...)' |
| Or full alternative method starting with the calculation of BAC |
| Allow 338.6(6...) to 338.7 (${ }^{\circ}$) |

\hline
\end{tabular}

$\begin{aligned} & \text { 8. (Difference in monthly payments }=\text {) } \\ & \frac{0.0025 \times 17000}{1-(1+0.0025)^{-48}} \text { or } \frac{0.0025 \times 17000}{1-(1+0.0025)^{-60}} \\ & =\quad(£) 376.28(\ldots) \text { or } \quad(£) 305.46(7 \ldots) \\ & \begin{array}{r} \frac{0.0025 \times 17000}{1-(1+0.0025)^{-48}}-\frac{0.0025 \times 17000}{1-(1+0.0025)^{-60}} \\ =(£) 70.81 \end{array} \end{aligned}$	M1 A1 M1 M1 A1	Each expression may be seen in stages Accept (£)70.82 or (£)70.815(8...) if accurate monthly payments used If no marks awarded, SC1 for a final answer of $(£) 0.08$ or $(£) 0.09$ or (£)0.088(2...) from using 0.25 instead of 0.0025 OR SC1 for a final answer of ($£$)62.09 or ($£$)62.094(...) from using 0.025 instead of 0.0025 OR SC1 for a final answer of $(£) 851.05$ or ($£$)851.06 or (£)851.053(...) from using the correct rate with $\mathrm{n}=4$ and $\mathrm{n}=5$
9(a) (Hzntl distance from C to A =) 450 (cm) $(\mathrm{AB}=) \sqrt{400^{2}+450^{2}+480^{2}}$ $(\mathrm{AB}=) 770(\mathrm{~cm})$	M1	May be seen in stages FT 'their 450' provided < 600 AND provided not an underived 300 or 400 or 480 M2 for - $\sqrt{400^{2}+{ }^{\prime} \text { their } 450^{\prime 2}+480^{2}}$ where 600 < 'their 450 ' 1200 OR 'their 450 ' $=$ an underived 300 or 400 or 480 , or - $400^{2}+450^{2}+480^{2}$ with the same FT as for M3 M1 (may be embedded in further working), with the same FT as for M3, for - $400^{2}+450^{2}$ OR $450^{2}+480^{2}$ OR $400^{2}+480^{2}$ or - $\begin{array}{cc}\sqrt{400^{2}+450^{2}} & \text { OR } \sqrt{450^{2}+480^{2}} \\ (=\sqrt{362500}) & (=\sqrt{432900}) \\ \left(=\sqrt{400^{2}+480^{2}}\right. \\ (=\sqrt{390400})\end{array}$ (=602.0(7...)) (=657.9(5...)) (=624.8(1...)) CAO. Must be from $\sqrt{592900}$ Note: an answer of $770.0(\mathrm{~cm})$ is evidence of rounding an incorrect answer and is awarded A0
$\begin{aligned} & 9(\text { b) } 2 \times 770 \div 45 \\ & \quad \text { (Number of strips =) } 35 \end{aligned}(=34.222 \ldots)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their 770' from (a) Needs to be correctly rounded up If FT 'their 770 ', must come from doubling then rounding, not rounding then doubling Note: if $2 \times$ 'their $770^{\circ} \div 45$ results in an integer, then award M1A0

