

LEVEL 2 MARKING SCHEME

SUMMER 2023

LEVEL 2 ADDITIONAL MATHEMATICS 9550-01

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

LEVEL 2 ADDITIONAL MATHEMATICS

SUMMER 2023 MARK SCHEME

		Mark	Comment
1			Penalise including '+c' -1 only throughout
	(a) $27x^8$ (+) $-8x^{-9}$ (+0)	В3	B1 for 27x ⁸ (not 9×3x ⁸), B1 for -8x ⁻⁹ and B1 for +0 (or blank) provided at least one other mark awarded. If B3 penalise further incorrect working -1, e.g. treat further incorrect work with term -8x ⁻⁹ as ISW unless B3
	(b) % x ^{-1/6} or equivalent	B1	Index needs to be simplified. ISW
	(c) $\frac{-7x^{-8}}{4}$ or $\frac{-7}{4x^{8}}$	B1	CAO. ISW
		5	

 $x^2 = 20x - 28$ written correctly showing correct completing of the square, e.g., for sight of any one of the following:

•
$$(x-10)^2-100=-28$$

•
$$(x-10)^2-100+28=0$$

•
$$100 - (x - 10)^2 = 28$$

•
$$100 - (x - 10)^2 - 28 = 0$$

•
$$(x-10)^2 = 100-28$$

$$-(x-10)^2+100=28$$

$$-(x-10)^2+100-28=0$$

$$-(x-10)^2 = -100 + 28$$

•
$$(x-10)^2 = 72$$

$$\bullet \quad (x-10)^2 - 72 = 0$$

$$-(x-10)^2 = -72$$

$$-(x-10)^2+72=0$$

•
$$-(-x+10)^2+100-28=0$$

•
$$-(-x + 10)^2 + 72 = 0$$
 or equivalent

$$(x =) 10 \pm 6\sqrt{2}$$

or $(x =) 10 + 6\sqrt{2}$ with $10 - 6\sqrt{2}$

M2 | No working, no marks

'=0' may be implied in previous working, e.g., from sight of $x^2 - 20x + 28$ (= 0), or further working

M1 for sight of any one of the following, including if embedded in incorrect working:

•
$$(x-10)^2$$
 (-100)

•
$$-(x-10)^2$$
 (+ 100)

$$-(-x+10)^2 (+100)$$

OR

Allow M1 for any one of the following, if not corrected in further correct working (which may then be M2):

•
$$(x-10x)^2-100+28$$

•
$$-(x-10x)^2+100-28$$

$$\bullet \quad (x+10)^2 - 100 + 28$$

A2 ISW for award of A2 or A1

Allow A2 for strict FT from M1 and:

•
$$(x-10)^2 = 100 + 28$$
 for an answer of $10 \pm 8\sqrt{2}$

•
$$(x + 10)^2 = 100 - 28$$
 for an answer of $-10 \pm 6\sqrt{2}$

A1 for any of the following, (x =)

•
$$10 \pm 2\sqrt{18}$$

•
$$10 \pm 3\sqrt{8}$$

•
$$10 + 6\sqrt{2}$$

•
$$10 - 6\sqrt{2}$$

OR A1 for strict FT from M1 and $(x - 10)^2 = 100 + 28$, for:

•
$$10 \pm 2\sqrt{32}$$

- $10 \pm 4\sqrt{8}$
- $10 + 8\sqrt{2}$
- $10 8\sqrt{2}$

OR A1 for strict FT from M1 and $(x + 10)^2 = 100 - 28$, for:

- $-10 \pm 2\sqrt{18}$
- $-10 \pm 3\sqrt{8}$
- $-10 + 6\sqrt{2}$
- $-10 6\sqrt{2}$

If no marks, Award SC1 for either:

- $-10 \pm 8\sqrt{2}$ from $(x + 10)^2 = 128$
- 'their simplified $a \pm b\sqrt{c}$ ' from their $(x)^2 = ...$ provided equivalent level of difficulty with a > 0, c > 0 and b is a product of at least 2 integers

No FT for A mark when attempting to write the square root of a negative number, e.g. $\sqrt{-72}$ or $\sqrt{-128}$

If no marks, award SC1 for $\sqrt{72} = \pm 6\sqrt{2}$ or $\sqrt{128} = \pm 8\sqrt{2}$

3	(a) $12x^{7/10}$	B1	Indices must be simplified throughout
	(b) x ⁵	B1	Must be simplified
	(c) $2 + 5x^{1/2}$ or $2 + 5\sqrt{x}$	B2	Allow $1(2 + 5x^{1/2})$ For award of B2 mark final answer
			B1 for any of the following: • + $5x^{1/2}$ • + $5\sqrt{x}$
		4	• $2 + \dots$ • $2(x^0) + 5x^{2/4}$
4	$x^{2} + 5x - 36 = 0$ or $0.5x^{2} + 2.5x - 18 = 0$ or equivalent	B2	Must show or imply in further working '=0' B1 for any one of the following: • $x^2 + 5x = 18 \times 2$ • $x^2/2 + 2.5x = 18$
	(x-4)(x+9) = (0) or $(x/2-2)(x+9) = (0)$	M1	M0 A0 if factorising not seen Factorisation must be seen FT their $ax^2 + bx + c = 0$ provided it factorises and $a\neq 0$, $b\neq 0$ and $c\neq 0$
	x = 4 with x = -9	A1 4	

5	(a) (Width =) $\frac{142}{2+5\sqrt{3}}$ or $142 \div (2+5\sqrt{3})$	B2	B1 for width \times $(2 + 5\sqrt{3}) = 142$ or $a(b + c\sqrt{d}) \times (2 + 5\sqrt{3}) = 142$ Allow B1 for $x \times 2 + 5\sqrt{3} = 142$ or $142 \div 2 + 5\sqrt{3}$ unless treated correctly in further working
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Working MUST be seen. No working, no marks Depends on B2 previously awarded
	$2(5\sqrt{3}-2)$ or $2(-2+5\sqrt{3})$	A1	CAO. Mark final answer
	 (b) Annotated diagram showing: perpendicular (right angle indicated) (unambiguous) angle 30° (and right angle) 	B2	Allow diagram with an appropriate height drawn without the right angle indicated as 'perpendicular' and a 'right angle'
	 (length of ½ side as 1) with √3 derived or correct indication 		Allow if the correct angle of 30° is indicated unambiguously but not labelled
	For example:		Do not accept if both the 30° and 90° angles are both indicated by single arcs without labels
	√3 30° 2		Allow if length ½ side as 1 is omitted
	1	6	 B1 for sight of one of the following: (perpendicular) height and (unambiguous) angle 30° √3 derived or correct indication
6	(a) Substitution of $x = -5$, $4(-5)^3 - 2(-5)^2 - (-5) = -500 - 50 + 5$) -545	M1 A1	Or division method giving $4x^2 - 22x$ Allow for intention, e.g. $4(-5)^3 - 2(-5)^2 - 5$ (= -555) Mark final answer
	(b)(i) Substitute $x = 2$, $(2)^3 - 6(2)^2 - 13(2) + 42$ (= 8 - 24 - 26 + 42)	M1	Or division method giving x^2 - $4x$
	Showing $f(2) = 0$	A1	Accept sight of substitution with '=0' shown
	(ii) $(x-2)(x^2 + bx + c)$ or intention to divide by $(x - 2)$ with x^2 shown	M1	If any values are inserted at least 1 needs to be correct. Appropriate sight of -4x or -21 implies M1 (and possible A1 to follow)
	$((x-2))$ $(x^2 - 4x - 21)$	A2	A1 for -4x or -21 Or use of factor theorem A1 (x + 3), A1 (x - 7)
	(x-2)(x+3)(x-7)	A1 8	CAO, with all 3 factors shown, ignore sight of "=0", ISW Must be from sight of x^2 - $4x$ - 21 previously No working to show factorising is M0 A0 A0

7	(Surface area) $326.4 = \pi \times 5.6 (5.6 + 1)$ or $326.4 = \pi \times 5.6^2 + \pi \times 5.6 \times 1$	M1	
	$1 = \underbrace{\frac{326.4}{\pi \times 5.6}}_{-5.6} - 5.6 \text{or} \underbrace{\frac{326.4 - 5.6^2 \times \pi}{\pi \times 5.6}}_{-5.6}$	m1	(= 12.95 cm or 12.96 or 13 cm) Allow l = 12.95, 12.96 or 13 from trial & improvement
	$(h^2 =) (12.95)^2 - 5.6^2$	M1	FT 'their derived 1'
	$h^2 = 136.418$ or $(h =) \sqrt{136.418}$	A1	FT 'their derived 1' provided '> 5.6
	(Vertical height) $h = 11.6798$ (cm)	A1	Allow rounding or truncation of h FT M1 A0 to allow A1 for square root of 'their 136.418 provided leads to 'their h' < 'their l' Note:
			$l \qquad h^2 \qquad h$
			12.95 <i>136.34</i> 11.676
			12.96 136.60 11.687
			12.9 135.05 11.62
			13 137.64 11.73
	(Volume V =) $\frac{1}{3} \times \pi \times 5.6^2 \times 11.6798$	M1	FT 'their h' > 0, provided at least M1 previously awarded Not for use of 'their l'
	Answers in the range 383.2 (cm ³) to 385.3 (cm ³)	A1	CAO, not a FT Do not FT from allowance of premature rounding or truncation of h for previous A1 as 'their answer' will now be outside the range allowed
	QWC2:	QWC	QWC2 Presents relevant material in a coherent and logical
	Candidates will be expected to present work clearly, with words	2	manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
	explaining process or steps AND		QWC1 Presents relevant material in a coherent and logical
	 make few if any mistakes in mathematical form, spelling, 		manner but with some errors in use of mathematical form, spelling, punctuation or grammar
	punctuation and grammar in their answer		OR evident weaknesses in organisation of material but using
	ower a training		acceptable mathematical form, with few if any errors in
	QWC1: Candidates will be expected to		spelling, punctuation and grammar.
	 present work clearly, with words explaining process or steps 		QWC0 Evident weaknesses in organisation of material, and
	OR		errors in use of mathematical form, spelling, punctuation or
	make few if any mistakes in		grammar.
	mathematical form, spelling,		
	punctuation and grammar in their		
	final answer	9	

8	$\frac{10x + 3}{2} = 4x^{2} + 2x - 3 \text{ or}$ $10x - 2(4x^{2} + 2x - 3) + 3 = 0$ or equivalent	M1	For M1 allow intention, with no more than 1 slip or for use of $y = 5x + 3$
	$8x^2 - 6x - 9 = 0$ or equivalent	A1	CAO. Must be equated to zero. '=0' may be implied in further work to solve, if no further work and not '=0' then A0
	$x = \frac{-(-6) \pm \sqrt{((-6)^2 - 4 \times 8 \times -9)}}{2 \times 8}$ or $(2x3) (4x3)$ or equivalent	m1	Working must be seen for m1 to be awarded If not solved by factorising, the use of correct quadratic formula must be seen, allow 1 slip in substitution (not a slip with the formula) FT provided M1awarded for equivalent level of difficulty
	$x = \frac{6 \pm \sqrt{324}}{16}$ or $(2x - 3)(4x + 3) (=0)$	A1	Or equivalent Do not FT from m1 awarded when there has been a slip in substitution
	x = 1.5 with $x = -0.75$	A1	Or equivalent. ISW
	x = 1.5 and $y = 9with x = -0.75 and y = -2.25$	A1	Or equivalent FT provided M1, m1 previously awarded using their values of x in $(10x + 3)/2$ or $4x^2 + 2x - 3$, but not in an incorrect rearrangement of the given equations, to find y-values Accept answers given as coordinates
	Alternative using $x = (2y - 3)/10$		
	$y = 4(2y - 3)^2 + 2(2y - 3) - 3$ or equivalent	M1	
		A1	Must equate to zero
	or equivalent $y = \{27 \pm \sqrt{(27^2 - 4 \times 4 \times -81)}\}/2 \times 4$ or $(4y9)(y9)$ or equivalent	m1	Working must be seen for m1 to be awarded If not solved by factorising, the use of correct quadratic formula must be seen, allow 1 slip in substitution (not a slip with the formula) FT provided M1awarded for equivalent level of difficulty
	$y = (27 \pm \sqrt{2025})/8 \text{ or } (4y + 9)(y - 9)$ or equivalent	A1	Do not FT from m1 if given when including a slip in substitution
	y = -2.25 with $y = 9x = 1.5$ and $y = 9$ with x = -0.75 and $y = -2.25$	A1 A1	Or equivalent. ISW Or equivalent FT to final A1, provided M1, m1 previously awarded using their values of y in $(2y - 3)/10$ or $y = 4x^2 + 2x - 3$, but not in an incorrect rearrangement of the given equations, to find x-values

9	264x ¹⁰	B2	B1 for sight of $24x^{11}$. FT to 2^{nd} B1 from $dy/dx = kx^n$
		2	Ignore incorrect notation
10	(a)(i) $(AB^2 =) (48)^2 + (6 - 1)^2$	M1	Or equivalent
	$(=12^2 + 5^2)$ or AB = $\sqrt{169}$	1,11	or equivalent
	(AB =) 13	A1	CAO. An unsupported 13 is awarded M1 A1
	(a)(ii) Gradient AB (6 - 1) / (4 8)	M1	Check if 48 and 6-1 are from incorrect evaluations in (a)(i), provided these calculations are seen, allow M1 but A0
	= 5/12	A1	Mark final answer and then FT Must be simplified if FT is a whole number Allow -5/-12 provided not contradicted as -5/12 in further working Allow 0.416(66) For M1 A1, but FT for B1 must be given as -2.4
	Perpendicular gradient is - 12/5	B1	FT -1/'their 5/12' Award of B1 for -12/5 implies previous M1 and A1
	(a)(iii) $(4 + - 8)/2$, $(6 + 1)/2$	M1	
	or equivalent Midpoint AB (-2, 3.5) or equivalent	A1	CAO. ISW. Allow (x =) -2 (and y =) 3.5 Award M1 A1 for (-2, 3.5) if unsupported, provided not
	(b) $9 = 4 \times -3 + c$ or $y - 9 = 4(x - 3)$	= 4(x M1) from incorrect working	from incorrect working
	or $4 = y - 9$ x3 y = 4x +	A1 9	CAO. Must be in this form
	21		
11	(a) $14x^7/7 - 5x + 4x^{-2}/-2$	В3	B1 for each term ISW from correct unsimplified form.
	$2x^7 - 5x - 2x^{-2}$ or $2x^7 - 5x - 2/x^2 + c$	B1 B1	CAO simplified form. Mark final answer Awarded only if at least B1 is awarded for integration
	(constant)		
	(b) $8x^4/4 + 4x^2/2$ or $2x^4 + 2x^2$	M2	No workings, no marks Ignore sight of '+c' for M marks only M1 one term correct.
	Use of correct limits 3 & 2 in correct order and intention to subtract	m1	3,22 2.22 35
	$((2\times81 + 2\times9) - (2\times16 + 2\times4) =)$	A1 9	CAO. Must be from correct working
	140		

12	(Diagonal ² =) $3^2 + 3^2$	M1	Or $((\frac{1}{2} \text{ diagonal})^2 =) (3^2 + 3^2) \div 2$
	(Diagonal =) $\sqrt{18}$ or $3\sqrt{2}$ or 4.24(cm)	A1	Or (½ diagonal =) $\frac{\sqrt{18}}{2}$ or $\frac{3\sqrt{2}}{2}$ or 2.12(cm)
	(Angle x =) $\cos^{-1} \frac{1/2 \sqrt{18}}{6}$ or $\cos^{-1} \frac{6^2 + (\sqrt{18})^2 - 6^2}{2 \times 6 \times \sqrt{18}}$ (= $\cos^{-1} 0.35355$)	M2	FT 'their derived diagonal' or 'their derived ½diagonal' M1 for $6^2 = 6^2 + (\sqrt{18})^2 - 2 \times 6 \times \sqrt{18} \times \cos x$ or $\cos x = \frac{1/2}{6} \frac{\sqrt{18}}{12}$ or $\frac{\sqrt{18}}{4}$ or $\frac{\sqrt{2}}{4}$ Note: If $3\sqrt{2}$ is used in the cosine rule, need $(3\sqrt{2})^2$ or correct intention implied by further working
	An answer in the range 69.29(°) to 69.31(°)	A1	Allow an answer rounded or truncated to 69(°) provided it is from working that would lead an angle in the range 69.29(°) to 69.31(°)
	Alternative: $((\frac{1}{2} \text{ diagonal})^2 =) (3^2 + 3^2) \div 2$ $(\frac{1}{2} \text{ diagonal} =) \frac{\sqrt{18}}{2} \text{ or } \frac{3\sqrt{2}}{2} \text{ or } 2.12(\text{cm})$	M1 A1	Or (Diagonal ² =) $3^2 + 3^2$ Or (Diagonal =) $\sqrt{18}$ or $3\sqrt{2}$ or 4.24(cm)
	(Height ² =) $6^2 - (\frac{\sqrt{18}}{2})^2$ or (Height ² =) $6^2 - 2.12^2$ (= 31.5 cm) or (Height ² =) $6^2 - (3/2)^2 - (3/2)^2$ or (Height =) $\sqrt{3}1.5$ (= 5.61cm)	M1	FT 'their derived ½diagonal' or 'their derived diagonal'
	sin x = 5.61/6 (= 0.935) or tan x = 5.61/2.12 (= 2.646)	m1	Depends on previous M1 awarded
	An answer in the range 69.29(°) to 69.31(°)	A1	Allow an answer rounded or truncated to 69(°) provided it is from working that would lead to an angle in the range 69.29(°) to 69.31(°)
		5	

13	$(dy/dx=)\frac{3x^2+2x-15}{3}$ or $x^2+2x-15$	B1	Must not be from sight of an incorrect equation, i.e. finding dy/dx from $y = x^3 + 3x^2 - 45x$ is awarded B0
	$dy/dx = 0$ or $x^2 + 2x - 15 = 0$	M1	FT their dy/dx from ax ² + bx throughout
	$x = \{-(2) \pm \sqrt{(2^2 - 4 \times 1 \times -15)}\}/2$ or $(x - 3)(x + 5) = 0$	m1	If the quadratic formula used, working must be shown, allow 1 slip in substitution
	x = 3 and x = -5	A1	y-coordinates not required
	$d^2y/dx^2 = 2x + 2$	M1	Method for determining min or max MUST be shown, final answer only is M0 here, then A0, A0 Or first derivative test, interpretation of first derivative test. Or alternative. FT 'their dy/dx' provided equivalent difficulty
	At $x = -5$, $d^2y/dx^2 < 0$, point is a maximum At $x = 3$, $d^2y/dx^2 > 0$, point is a minimum	A1 A1	FT for 'their x value' FT for 'their other x value' provided this does not have the same interpretation as the first x value If $M0A0A0$, award SC1 for correct FT from 'their $d^2y/dx^2 = ax + b$, $a>0$ ' applied correctly provided it leads to 1 maximum and 1 minimum Do not accept trial & improvement methods unless both
		7	stationary points are found correctly and confirmed as stated in the mark scheme
14	$y + \delta y = 3(x + \delta x)^2 + 4$	B1	Or alternative notation.
	Intention to subtract (y=) $3x^2 + 4$ to find δy $\delta y = 6x\delta x + 3(\delta x)^2$	M1 A1	Accept δx^2 as meaning $(\delta x)^2$
	Dividing by δx and (\lim) $\delta x \rightarrow 0$ $dy/dx = \lim_{\delta x \rightarrow 0} \delta y/\delta x = 6x$	M1 A1	FT equivalent level of difficulty CAO. Must follow from correct working Use of dy/dx throughout or incorrect notation then possible maximum is only 4 marks, final A0

15	 (a) Sine curve that intersects x-axis at (0°, 0) (90°, 0) (180°, 0) (270°, 0) and (360°, 0), has maxima at ≈ 45° and 225° and minima at ≈ 135° and 315° has 3 and -3 indicated on the y-axis 	B2	Must show a clear curve, not straight at turning points B1 for one of the following, allowing straight rather than curves at turning points: • a sine curve intersecting x-axis at (0°, 0) (90°, 0) (180°, 0) (270°, 0) and (360°, 0) • a sine curve (which may have incorrect period) with 3 and -3 indicated on the y-axis
	(b) 7.5°, 82.5°, 187.5° and 262.5° alone	B2	Must be correct to 1 decimal place and not from incorrect working B1 for sight of 7.5(°) or for the correct 4 angles but not given to 1 decimal place Note: $\sin 2x = 0.777/3 = 0.259$, followed by incorrect working $x = 0.259/\sin 2 = 7.42$ is B0
		4	WORKING A 0.237/31112 7.42 13 D0
16	Curve intersections with x-axis 3 and 9 or appropriate sight of $x = 3$ and $x = 9$	B2	B1 for any of the following • either intersection correct • sight of
	Intention to integrate	M1	Intention to integrate, hence not using given or differentiated expression
	$-x^3/3 + 12x^2/2 - 27x$	A2	Ignore sight of '+c. A1 one term correct
	Use of correct limits 9 & 3 in correct order and intention to subtract	m1	FT 'their stated value 9' > 0 and 'their stated value 3' > 0 in appropriate order provided 'their stated 9' ≠ 'their stated 3' There must be evidence of use of limits and subtraction
	36	A1	CAO Do not accept 36 + c Correct answer only gets B2 M1 A0 m0 A0 (for intention to integrate) No marks for use of the trapezium rule
		7	

17	When $x = 2$, finding $y = 16$	B1	
	dy/dx = 10x - 3 when x = 2 gradient is 17	M1 A1	Must be from sight of $dy/dx = 10x - 3$
	Use of $y - y_1 = m(x - x_1)$ or $y = mx + c$ or $m = \underbrace{y - y_1}_{x - x_1}$	M1	Method to form equation with appropriate substitution for at least two of x, y and m. FT 'their y value' (but not $y=2$) and 'their derived gradient'. Needs to be $x=2$, do not FT 'their x'
	$y-16 = 17 (x-2)$ or $16 = 17 \times 2 + c$, c = -18 or $y = 17x - 18$	A1	FT for $x = 2$, 'their y' and 'their derived m'
	17x - y - 18 = 0 or $-17x + y + 18 = 0$	A1	CAO. Allow terms in other orders provided '= 0' Mark final answer