

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS Mark Scheme - Summer 2013

Q	Additional Mathematics	Marks	Final
1	(a) $35x^4 - 5$ (+0)	B3	B1 for $35x^4$ (not $5\times7x^4$) B1 for -5 and B1 for +0 (or
1	(u) 55x 5 (+6)	15	blank) provided at least one other mark awarded.
	(b) $-6x^{-7}$ (or $-6/x^7$)	B1	CAO. Index needs to be simplified
	(c) $3/5x^{-2/5}$ or equivalent	B1	CAO. Index needs to be simplified.
		5	ISW once simplified to stages shown in (b) and (c)
2	(a)(4x+1)(2x-3)	B2	B1 $(4x - 1)(2x + 3)$. Ignore sight of "=0"
	-1/4 or 3/2	B 2	Must be from factorising. MUS1 F1 for their factors
			11 for their factors. B1 for each answer
	(b) $(x+6)^2 + \dots$	B1	Sight of $(x+6)^2$
	31	B1	Accept - 36 + 5 if not evaluated, otherwise mark final
			value
	Least value -31	B1	FT their value but not -36 or $+5$. Accept 'least is x= -31 '
3	4y - 4y + 12 or $y - y + 3$	/ 	The variables maybe reversed (or different), check that
3	4y = 4x + 12 of $y = x + 3x^2 + 30 = y^2$	B1 B1	they are used consistently, otherwise max B1 here
	$x^{2} + 30 = (x + 3)^{2}$ or $(y - 3)^{2} + 30 = y^{2}$	M1	Correct equate implies previous B2
			FT for their equate equivalent level of difficulty provided
			B1 awarded.
	$x^{2} + 30 = x^{2} + 6x + 9$ or $y^{2} - 6y + 9 + 30 = y^{2}$	Al	For correct expansion
	bx = 21 or $by = 39x = 3.5$ (cm) or $y = 6.5$ (cm)		CAO
	x = 5.5 (cm) or $y = 0.5$ (cm) y = 6.5 (cm) or $x = 3.5$ (cm)	A1 A1	CAO
			Trial and improvement methods are not accepted.
		7	No marks for an unsupported correct answer
4	(a) $(AB^2 =) (35)^2 + (9 - 7)^2 (=8^2 + 2^2)$	M1	Or $(-5-3)^2 + (7-9)^2$. Allow 1 slip in sign
	$AB = \sqrt{68}$	Al	CAO
	$= 2 \sqrt{17}$	DI	Sight of $2\sqrt{17}$ implies previous $\sqrt{68}$
			Sight of 2 (17 implies previous voo
	(b) Grad. AB $(9-7)/(3-5)$	M1	Or (7 -9)/(-5 -3)
	$= 2/8 \ (= 1/4)$	A1	CAO. Mark final answer and then FT
	Grad. perpendicular $-8/2$ (= -4)	B1	FT -1/grad AB
	(3+5)/2 $(9+7)/2$	M1	$A_{ccept}(-1)$ or (-8)
	Mid point AB $(-1, 8)$ or equivalent	A1	CAO
	Use of $y=mx+c$ or $y-y_1=m(x-x_1)$	M1	Method to find the equation
			FT their mid-point (not A or B) & their perpend. grad.
	$y = 8 = -\frac{8}{2}$ (y = -1)	A1	Unsimplified form
	y = -4x + 4	A1	Form $y=mx+c$. Accept factorised form
	2		
	QWC2: Candidates will be expected to	QWC	QWC2 Presents material in a coherent and logical manner,
	present work clearly, with words	2	using acceptable mathematical form, and with few if any
	explaining process or steps		errors in spelling, punctuation and grammar.
	• make few if any mistakes in		OWC1 Presents material in a coherent and logical manner
	mathematical form, spelling,		but with some errors in use of mathematical form,
	punctuation and grammar in their		spelling, punctuation or grammar
	answer		OR
			evident weaknesses in organisation of material but using
	QWCI: Candidates will be expected to		spelling nunctuation and grammar
	 present work clearly, with words explaining process or steps 		spennig, punctuation and grammal.
	OR		QWC0 Evident weaknesses in organisation of material.
	• make few if any mistakes in		and errors in use of mathematical form, spelling,
	mathematical form, spelling,		punctuation or grammar.
	punctuation and grammar in their	12	
	final answer	13	

0	Additional Mathematics	Morke	Final
V	Summer 2013	IVIAI KS	Fillai
5	$9x^2 - 1 - 1 + x^2 + 3 - 12x^2 (= -199)$	M1	Allow 1 error. Allow with sight of compensating x terms
	$-2x^2 + 1 (= -199)$	Al	
	$2x^2 = 200$ or $2x^2 - 200 = 0$	MI	FI quadratic provided <2 errors in simplification
	$(x^2 = 100 \text{ or } 2(x^2 - 100) = 0)$		An anoma from modine of a 10 implies M1 and
	$x - (\pm) \sqrt{100} \text{ or } (2) (x + 10)(x - 10) = 0$	1111	An answer from working of $x=10$ implies within Do not FT to m1 if $\sqrt{2}$ of negative value, if quadratic
			formula used then b^2 (as must be simplified
	Both $x = 10 \text{ AND } x = -10$	Δ1	$C \Delta \Omega$
	$\mathbf{D}\mathbf{U}\mathbf{U} = 10 \mathbf{T} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{X} = 10$	5	
6	$x+1 = x^2 + 2x - 3$	M1	
	$x^{2} + x - 4 = 0$	A1	Must be equate to zero
			FT provided their quadratic does not factorise and
			equivalent level of difficulty
	$\mathbf{x} = \{-1 \ \pm \sqrt{(1^2 - 4 \times 1 \times -4)}\}/2$	m1	Use of quadratic formula, allow 1 slip in substitution
	$x = \{-1 \ \pm \sqrt{17}\}/2$	A1	
	x = 1.56 and $x = -2.56$	Al	
	x = 1.56, $y = 2.56$ and $x = -2.56$, $y = -1.56$	Al	
			Alternative using $x = y - 1$:
			M1 $y = (y_{-1})^{2} + 2(y_{-1}) - 3$ or $y = y^{2} - 4$
			A1 $y^2 - y - 4 = 0$ (equate to zero)
			$m_1 \qquad y = \{1 + \sqrt{(1^2 - 4 \times 1 \times -4)}\}/2$
			A1 $y = (1 \pm \sqrt{17})/2$
			A1 $y = 2.56$ and $y = -1.56$
		6	A1 $x = 1.56$, $y = 2.56$ and $x = -2.56$, $y = -1.56$
7	(a) $432x^7$	B2	B1 for sight of $54x^8$. FT to 2^{nd} B1 from dy/dx = kx ⁿ
	5 0		2
	(b) $3/5 x^3 - 1/(2x^2) + 4x$	B3	B1 for each term. Accept unsimplified $+x^{-2}/-2$ ISW
	+ c (constant)	B1	Awarded if at least B1 for integration
	(c) $6x^{6}/6 + 5x$	B2	B1 for $6x^{6}/6$ or $5x$
	$[6x^{6}/6 + 5x]^{3}$	M1	FT their integration, not original. Intention to use 3, 2 and
			subtract
	$=(3^6+15)-(2^6+10)$	A1	FT for correct use of limits
	= 670	A1	CAO, not FT.
		11	Answer only, no working shown M0 A0 A0
8	(a) $7(2)^3 - 4(2)^2 + (2) - 2$ (= 56 - 16 + 2 - 2)	M1	Or division method giving $7x^2 + 10x \dots$
	= 40	A1	
			2
	(b)(1) Substitute $x = -3$	MI	Or division method giving $x^2 + x \dots$
	Showing $f(-3) = 0$	Al	Accept sight of substitution with equate to zero
	(ii) $(x+3)(x^2 + bx + c)$		
	or intention to divide by $(x+3)$ with x^2 shown	M1	
	$((x+3))$ (x^2+x-20)	A2	A1 for $+1x$ or -20 .
	((x, y)) (x + x - 20)		Or use of factor theorem A1 (x-4), A1 (x+5)
	((x+3)) $(x-4)(x+5)$	A1	CAO. Final answer, but ignore sight of "=0"
		8	

Q	Additional Mathematics Summer 2013	Marks	Final
9	Strategy: e.g. need to use 14° and 6.3cm	S1	Properties of a kite and visualising where height is
	AND 3D visualised		
	EC = 6.3/tan14	M2	M1 for $Tan14 = 6.3/EC$
			OR Alternative method
			$M1 \text{ for } 12.6/\sin 28 = DC/\sin 76 (DC = 26(.04cm))$
			and then M1 for sin76 = EC/their DC
	EC = 25(.2679cm)	A1	If 12.6 allow SC1 for answer 50.5
	Tan ECH = $17.3/EC$	M1	FT their EC
	<ECH = tan ⁻¹ 0.68	M1	
	34(.39°)	A1	
			If 12.6 used then max mark is SC1, M1,M1,A1(18.9)
			NOTES for other alternative methods:
			Do not credit $17.3^2+6.3^2$ until seen as part of an overall
		7	strategy.
10	$y+\delta y = (x+\delta x)^2 - 4(x+\delta x)$	B1	Or alternative notation. Allow if final bracket omitted
	Intention to subtract (y=) $x^2 - 4x$ to find δy	M1	
	$\delta y = 2x\delta x + (\delta x)^2 - 4\delta x$	A1	Accept δx^2 as meaning $(\delta x)^2$
	Dividing by δx and (lim) $\delta x \rightarrow 0$	M1	FT equivalent level of difficulty
	$dy/dx = \lim \delta y/\delta x = 2x - 4$	A1	CAO. Must follow from correct working
	$\delta x \rightarrow 0$		Use of dy/dx throughout max 4 marks only, final A0
		5	•• ·
	$\hat{0}(10x - x^2)dx$	MI	Intention to integrate
	$=5x^2 - x^3/3$	A2	A1 for each. Accept 10/2 as 5
	Use of correct limits 10 & 0 in correct order	m1	
	500/3 or equivalent	A1	CAO. Accept 166.6(66) or 166.7
			Answer only gets no marks
		5	No marks for use of the trapezium rule.

Q	Additional Mathematics Summer 2013	Marks	Final
12	$(dy/dx=) 9x^2 - 36$	B1	
	$dy/dx = 0$ or $9x^2 - 36 = 0$	M1	FT their dy/dx form $ax^2 + b$
	x = 2 and $y = -37$	A1	
	x = -2 and $y = 59$	A1	Answer only, no working shown M0 A0 A0
	$d^{2}y/dx^{2} = 18x$ At (2, -37) $d^{2}y/dx^{2} >0$, point is a minimum At (-2, 59): $d^{2}y/dx^{2} <0$, point is a maximum	M1 A1 A1 7	Method for determining min or max MUST be shown, final answer only is M0 here, then A0,A0 Or first derivative test, interpretation of first derivative test. Or alternative. FT for their x value FT for their other x value provided this does not have the same interpretation as the first x value SC1 for correct FT from $d^2y/dx^2 = ax$, $a>0$
13	When $x = 2$, finding $y = 20$	B1	
	dy/dx = 6x + 4	M1	
	when $x = 2$ gradient is 16	A1	
	Use of $y - y_1 = m(x - x_1)$ or $y = mx + c$	M1	Method to form equation
			FT their y value, but not y=16 and their derived gradient
	$y-20 = 16(x-2)$ or $20 = 16\times 2 + c$, $c = -12$ 16x - y - 12 = 0 or $-16x + y + 12 = 0$	A1 A1 6	CAO. Must be in this form, accept equivalents written as 3 terms not with whole number coefficients
14	(a) 2500	B1	$e.g.(\sqrt{50})^4 = 50^2 = 2500, \text{ or } 50^2 = 2500$
			Answer only, no working shown, B0
	(b)(i) $(12)x^{2/4}/x^{3/2}$ or equivalent first stage of work evaluated correctly with simplification of indices	B1	
	$12x^{-1}$ or $12/x$	B1	CAO. Mark final answer
	(ii) Correctly extracting a factor of $x^{1/6}$ (numerator), OR correct alternative method with one correct step towards simplification $3 + x^{1/6}$	M1 A1	Must be correct, but could be $4x^{1/6}$, $2x^{1/6}$ or $x^{1/6}$. For an alternative method, need sight of the two terms and $3 + \dots$ or $\dots + x^{1/6}$ for M1 CAO. Mark final answer
		5	
15	(a) General sine curve through (0,0), (180,0) and (360,0) only	B1	
	Correct, sketch with 4 and -4 on y-axis	B1	
	(b) 0°, 180° and 360° only	B1	
1		3	

GCSE LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS MS - Summer 2013

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>