$\frac{\text { WJEC }}{\text { CBAC }}$

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS
 Mark Scheme - Summer 2013

Q	Additional Mathematics Summer 2013	Marks	Final
1	(a) $35 x^{4}-5(+0)$ (b) $-6 x^{-7}$ (or $-6 / x^{7}$) (c) $3 / 5 x^{-2 / 5}$ or equivalent	$\begin{gathered} \hline \text { B3 } \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	B1 for $35 x^{4}\left(\right.$ not $5 \times 7 x^{4}$), B1 for -5 , and B1 for +0 (or blank) provided at least one other mark awarded. CAO. Index needs to be simplified CAO. Index needs to be simplified. ISW once simplified to stages shown in (b) and (c)
2	$\begin{aligned} (a)(4 x+1)(2 x-3) \\ -1 / 4 \text { or } 3 / 2 \end{aligned}$ (b) $\begin{aligned} & (x+6)^{2} \pm \ldots \\ & \ldots \ldots \ldots \end{aligned}$ Least value - 31	B2 B2 B1 B1 B1 7	B1 $(4 x-1)(2 x+3)$. Ignore sight of " $=0$ " Must be from factorising. MUST FT for their factors FT for their factors. B1 for each answer Sight of $(x+6)^{2}$ Accept - $36+5$ if not evaluated, otherwise mark final value FT their value but not -36 or +5 . Accept 'least is $x=-31$ '
3	$\begin{array}{cll} \hline 4 y=4 x+12 \text { or } y=x+3 \\ x^{2}+30=y^{2} & \\ x^{2}+30=(x+3)^{2} & \text { or } & (y-3)^{2}+30=y^{2} \\ & \\ x^{2}+30=x^{2}+6 x+9 & \text { or } & y^{2}-6 y+9+30=y^{2} \\ 6 x=21 & \text { or } & 6 y=39 \\ x=3.5(\mathrm{~cm}) & \text { or } & y=6.5(\mathrm{~cm}) \\ y=6.5(\mathrm{~cm}) & \text { or } & x=3.5(\mathrm{~cm}) \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \\ & \hline \end{aligned}$	The variables maybe reversed (or different), check that they are used consistently, otherwise max B1 here Correct equate implies previous B2 FT for their equate equivalent level of difficulty provided B1 awarded. For correct expansion CAO CAO Trial and improvement methods are not accepted. No marks for an unsupported correct answer
4	$\text { (a) } \begin{gathered} \left(\mathrm{AB}^{2}=\right)(3--5)^{2}+(9-7)^{2}\left(=8^{2}+2^{2}\right) \\ \mathrm{AB} \end{gathered}=\sqrt{68}, ~=2 \sqrt{17} \text {. }$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Or $(-5-3)^{2}+(7-9)^{2}$. Allow 1 slip in sign CAO FT 'their AB' of equivalent difficulty expressed correctly Sight of $2 \sqrt{ } 17$ implies previous $\sqrt{ } 68$
	$\begin{aligned} & \text { (b) } \text { Grad. } \mathrm{AB}(9-7) /(3--5) \\ &=2 / 8(=1 / 4) \\ & \text { Grad. perpendicular }-8 / 2(=-4) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Or (7-9)/(-5-3) CAO. Mark final answer and then FT FT - $1 /$ grad AB
	$(3+-5) / 2,(9+7) / 2$ Mid point $\mathrm{AB}(-1,8)$ or equivalent	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \text { Accept }(-1, \ldots) \text { or }(\ldots, 8) \\ & \text { CAO } \end{aligned}$
	Use of $y=m x+c$ or $y-y_{1}=m\left(x-x_{1}\right)$	M1	Method to find the equation FT their mid-point (not A or B) \& their perpend. grad.
	$\begin{gathered} y-8=-8 / 2(x--1) \\ y=-4 x+4 \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	Unsimplified form Form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. Accept factorised form
	QWC2: Candidates will be expected to present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer	QWC 2 13	QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.

Q	Additional Mathematics Summer 2013	Marks	Final
5	Both $\mathrm{x}=10$ AND $\mathrm{x}=-10$	M1 A1 M1 m1 A1 5	Allow 1 error. Allow with sight of compensating x terms CAO FT quadratic provided ≤ 2 errors in simplification An answer from working of $\mathrm{x}=10$ implies M1 m1 Do not FT to m 1 if $\sqrt{ }$ of negative value, if quadratic formula used then $b^{2}-4 a c$ must be simplified CAO
6	$\begin{aligned} & x+1=x^{2}+2 x-3 \\ & x^{2}+x-4=0 \end{aligned}$ $\begin{aligned} & \mathrm{x}=\left\{-1 \pm \sqrt{ }\left(1^{2}-4 \times 1 \times-4\right)\right\} / 2 \\ & \mathrm{x}=\{-1 \pm \sqrt{ } 17\} / 2 \\ & \mathrm{x}=1.56 \text { and } \mathrm{x}=-2.56 \\ & \mathrm{x}=1.56, \mathrm{y}=2.56 \text { and } \mathrm{x}=-2.56, \mathrm{y}=-1.56 \end{aligned}$	M1 A1 m1 A1 A1 A1 6	Must be equate to zero FT provided their quadratic does not factorise and equivalent level of difficulty Use of quadratic formula, allow 1 slip in substitution Alternative using $x=y-1$: M1 $y=(y-1)^{2}+2(y-1)-3$ or $y=y^{2}-4$ A1 $y^{2}-y-4=0$ (equate to zero) $\mathrm{m} 1 \quad \mathrm{y}=\left\{1 \pm \sqrt{ }\left(1^{2}-4 \times 1 \times-4\right)\right\} / 2$ A1 $y=(1 \pm \sqrt{ } 17) / 2$ A1 $y=2.56$ and $y=-1.56$ A1 $\quad x=1.56, y=2.56$ and $x=-2.56, y=-1.56$
7	(a) $432 x^{7}$ (b) $3 / 5 x^{5}-1 /\left(2 x^{2}\right)+4 x$ +c (constant) $\begin{aligned} & \text { (c) } 6 x^{6} / 6+5 x \\ & {\left[6 x^{6} / 6+5 x\right]^{3}} \\ & \qquad=\left(3^{6}+15\right)-\left(2^{6}+10\right) \\ & =670 \end{aligned}$	B2 B3 B1 B2 M1 A1 A1 11	B1 for sight of $54 x^{8}$. FT to $2^{\text {nd }}$ B1 from dy/dx $=k x^{n}$ B1 for each term. Accept unsimplified $+x^{-2} /-2$ ISW Awarded if at least B1 for integration B1 for $6 x^{6} / 6$ or $5 x$ FT their integration, not original. Intention to use 3,2 and subtract FT for correct use of limits CAO, not FT. Answer only, no working shown M0 A0 A0
8	(a) $\begin{gathered} 7(2)^{3}-4(2)^{2}+(2)-2 \quad(=56-16+2-2) \\ =40 \end{gathered}$ (b)(i) Substitute $x=-3$ Showing $f(-3)=0$ (ii) $(x+3)\left(x^{2}+b x+c\right)$ or intention to divide by $(x+3)$ with x^{2} shown $\begin{aligned} & ((x+3)) \quad\left(x^{2}+x-20\right) \\ & ((x+3)) \quad(x-4)(x+5) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A2 } \\ \\ \text { A1 } \\ 8 \\ \hline \end{gathered}$	Or division method giving $7 \mathrm{x}^{2}+10 \mathrm{x} \ldots$ Or division method giving $\mathrm{x}^{2}+\mathrm{x} \ldots$ Accept sight of substitution with equate to zero A 1 for +1 x or -20 . Or use of factor theorem A1 (x-4), A1 ($\mathrm{x}+5$) CAO. Final answer, but ignore sight of " $=0$ "

Q	Additional Mathematics Summer 2013	Marks	Final

Q	Additional Mathematics Summer 2013	Marks	Final
12	$\begin{aligned} & (d y / d x=) 9 x^{2}-36 \\ & d y / d x=0 \text { or } 9 x^{2}-36=0 \\ & \qquad \begin{array}{l} x=2 \quad \text { and } y=-37 \\ x=-2 \end{array} \\ & \begin{array}{l} d^{2} y / d x^{2}=18 x \end{array} \end{aligned}$ At $(2,-37) d^{2} y / d x^{2}>0$, point is a minimum At $(-2,59): d^{2} y / d^{2}<0$, point is a maximum	B1 M1 A1 A1 M1 A1 A1 7	FT their $d y / d x$ form $a x^{2}+b$ Answer only, no working shown M0 A0 A0 Method for determining min or max MUST be shown, final answer only is MO here, then $A 0, A 0$ Or first derivative test, interpretation of first derivative test. Or alternative. FT for their x value FT for their other x value provided this does not have the same interpretation as the first x value $S C 1$ for correct $F T$ from $d^{2} y / d x^{2}=a x, a>0$
13	When $\mathrm{x}=2$, finding $\mathrm{y}=20$ $d y / d x=6 x+4$ when $x=2$ gradient is 16 Use of $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$ or $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ $\begin{gathered} y-20=16(x-2) \quad \text { or } 20=16 \times 2+c, c=-12 \\ 16 x-y-12=0 \quad \text { or }-16 x+y+12=0 \end{gathered}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \\ 6 \end{gathered}$	Method to form equation FT their y value, but not $\mathrm{y}=16$ and their derived gradient CAO. Must be in this form, accept equivalents written as 3 terms not with whole number coefficients
14	(a) 2500 (b)(i) (12) $x^{2 / 4} / x^{3 / 2}$ or equivalent first stage of work evaluated correctly with simplification of indices $12 x^{-1} \text { or } 12 / \mathrm{x}$ (ii) Correctly extracting a factor of $\mathrm{x}^{1 / 6}$ (numerator), OR correct alternative method with one correct step towards simplification $3+x^{1 / 6}$	B1 B1 B1 M1 A1 5	$\text { e.g. }(\sqrt{ } 50)^{4}=50^{2}=2500 \text {, or } 50^{2}=2500$ Answer only, no working shown, B0 CAO. Mark final answer Must be correct, but could be $4 x^{1 / 6}, 2 x^{1 / 6}$ or $x^{1 / 6}$. For an alternative method, need sight of the two terms and $3+\ldots$ or $\ldots+x^{1 / 6}$ for M1 CAO. Mark final answer
15	(a) General sine curve through $(0,0),(180,0)$ and $(360,0)$ only Correct, sketch with 4 and -4 on y-axis (b) $0^{\circ}, 180^{\circ}$ and 360° only	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \\ \hline \end{gathered}$	

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

