Centre Number

0

Other Names

wjec cbac

WJEC LEVEL 2 CERTIFICATE

S15-9550-01

ADDITIONAL MATHEMATICS

A.M. MONDAY, 22 June 2015

2 hours 30 minutes

	For Ex	aminer's us	e only
	Question	Maximum Mark	Mark Awarded
ADDITIONAL MATERIALS	1.	4	
A calculator will be required for this paper.	2.	3	
	3.	5	
INSTRUCTIONS TO CANDIDATES	4.	11	
Use black ink or black ball-point pen.	5.	10	
Write your name, centre number and candidate number in the spaces at the top of this page.	6.	6	
Answer all the questions in the spaces provided.	7.	8	
Take π as 3.14 or use the π button on your calculator.	8.	5	
	9.	10	
INFORMATION FOR CANDIDATES	10.	5	
You should give details of your method of solution when	11.	7	
appropriate. Unless stated, diagrams are not drawn to scale.	12.	5	
Scale drawing solutions will not be acceptable where you	13.	6	
are asked to calculate.	14.	7	
The number of marks is given in brackets at the end of each question or part-question.	15.	3	
You are reminded that assessment will take into	16.	1	

You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 5.

When you are asked to show your working you must include enough intermediate steps to show that a calculator has not been used.

4

100

17.

Total

Examiner only Factorise $6x^2 - 11x - 10$ and hence solve the equation $6x^2 - 11x - 10 = 0$. [4] 1. 2. The expression $x^2 + 14x + 9$ has a minimum value. By **completing the square**, find the value of x when $x^2 + 14x + 9$ has its minimum value. (a) You must show your working. [2] Write down the minimum value of $x^2 + 14x + 9$. (b) [1]

3.	Find $\frac{d}{d}$	$\frac{1}{x}$ for each of the following.	Examiner only
		$y = 5x^8 - 6x - 9$ [3]	
	·····		
		$y = x^{-8}$ [1]	
	(C)	$y = x^{\frac{2}{5}}$ [1]	

The coordinates of the points D and E are (6, 22) and (-4, 14) respectively.				
(a)	Calculate the length of the line DE . Express your answer as a surd in its simplified form $n\sqrt{m}$.	[3]		
(b)	Find the equation of the straight line perpendicular to <i>DE</i> that passes through the mid-point of <i>DE</i> . Express your answer in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	[8]		
		••••••		

You will be assessed on the quality of your written communication in this question.	Examiner only
The length of a solid rectangular block is $x \text{ cm}$. The width of the block is 4 cm less than its length. The height is 1 cm more than the length. The total surface area of the rectangular block is 124 cm ² .	
By showing that $x^2 - 2x = 22$, find the length of the rectangular block, giving your answer in its simplest surd form. You must use an algebraic method and show all your working. [10]	
	•
	•
	1

5.

9550 010005

© WJEC CBAC Ltd.

ind the coordinates of the points of intersection of the curve $y = x^2 + 6x - 5$ and the str $= 2x + 1$.	
se an algebraic method and give your answers correct to 2 decimal places.	[6]

(a)		the remainder when $3x^3 - 2x^2 + 5x - 1$ is divided by $x + 2$.	[2]
 (b)		Show that $x - 2$ is a factor of $x^3 + 8x^2 + x - 42$.	[2]
······	(ii)	Hence factorise $x^3 + 8x^2 + x - 42$.	[4]
			······
······			

(a)	Find $\frac{d^2y}{dx^2}$ when $y = 2x^{10}$. [2]	Examin only
(b)	Given the following facts, find the values of a, b and c .	
	• $y = ax^{5} + bx + c$ • $\frac{d^{2}y}{dx^{2}} = 20x^{3}$ • when $x = 0, y = 5$	
	• when $x = 1, y = 9$ [3]]
·····		
·····		
•••••		

(a) Find	$21x^{6} - 3x^{2}$	$-\frac{1}{x^2} + 6 \mathrm{d}x.$		[5]
		vorking evaluate	$\int_{2}^{5} 6x^2 + 4x \mathrm{d}x.$	[5]
(b) Showi	ng all vour v	VULNITU. EVAIUALE		
<i>(b)</i> Showi	ng all your v	vorking, evaluate	\int_{2}	
<i>(b)</i> Showi	ng all your v		\mathbf{J}_2 or \mathbf{J}_2	
<i>(b)</i> Showi	ng all your v		J ₂ or the data	
(b) Showi	ng all your v		J ₂ or the data	
(b) Showi	ng all your v		J ₂ or the data	

	10	
Do n All w	ot use a calculator to answer this question. orking must be shown.	E
(a)	Use fractions and surds to show that $(\sin 30^\circ)^2 + (\cos 30^\circ)^2 = 1$. You must show all your calculations.	[2]
·····		
••••••		
•••••		
•••••		
(b)	Use fractions and surds to evaluate $5 \tan 45^\circ + 2 \sin 60^\circ + \tan 60^\circ$. You must show all your calculations and simplify your answer.	[3]
••••••		
••••••		
•••••		
•••••		

Examiner

2.	Given that $y = x^2 - 3x$, find $\frac{dy}{dx}$ from first principles. [5]	Examiner only

Examiner only

[6]

13. Find the equation of the tangent to the curve $y = 2x^2 - 8x$ at the point where x = 3. Give your answer in the form ax + by + c = 0.

$y_1 = 2y_1^3 = 24y_1 = 12$				0
$y = 2x^3 = 24x + 13$ You must show all	I your working.	of each of the stationary points on	[7]	
••••••				

Examiner only On the axes below, sketch the graph of $y = 5\cos x$ for values of x from 0° to 360°. 15. (a) [2] y ► X 90° 18^{0°} 270° 360° 0° Find all the solutions of the equation $5\cos x = 0$ for values of x from 0° to 360°. [1] (b)

16.	Without using a calculator, find the value of $(12^{\frac{1}{2}})^4$. Show all your working.	[1]	Examiner only
17.	Showing all your working, simplify each of the following. (a) $\frac{5x^{\frac{5}{8}} \times 4x^{\frac{3}{8}}}{x^{\frac{2}{3}}}$	[2]	
	$(b) \frac{6x^{\frac{1}{4}} + 3x^{\frac{3}{4}}}{3x^{\frac{1}{4}}}$		
	END OF PAPER		

© WJEC CBAC Ltd.