шјес cbac

GCSE MARKING SCHEME

AUTUMN 2021

GCSE
MATHEMATICS - NUMERACY UNIT 1 - HIGHER TIER 3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2021 MARK SCHEME

Unit 1: Higher Tier	Mark	Comments
1(a) $20000 \mathrm{ft}^{3}$	B1	
1 (b) 1.55×10^{8}	B1	
2(a)(i) Explanation, e.g. 'data is grouped', 'not raw data', 'table only gives group information' ' 15 days with less than 6 mm of rain, but we don't know if there was no rain on any of these days', 'only results between $0-6 \mathrm{~mm}$ ', 'doesn't give days of 0 mm rain, it has $0-6 \mathrm{~mm}$ '	E1	Allow, e.g. 'because it shows $0 \leq r<6$ is equal to 15 ', 'doesn't say if the 15 belongs to 0 or to less than 6 ', 'the table doesn't give you exactly how many mm in the days' Do not accept, e.g. 'Can't tell' without further explanation as to why, 'doesn't give you enough information', 'it's not accurate enough', 'no column with daily rainfall with no rain option', 'table only shows daily rainfall, not the number of days without rain', 'doesn't show if it actually rained or not', 'no section for 0 rainfall', 'doesn't show a day in the table when there is no rain', 'doesn't say if the 15 belongs to 0 or to the 6 ' 'no record of the number of days it did not rain'
2(a)(ii) Mid points 3, 9, 15, 21 $\begin{array}{cc} 3 \times 15+9 \times 11+15 \times 3+21 \times 1 \\ (45+99+45+21 & \\ & \\ & \div 30 \end{array}$	B1 M1 m1 A1	Note: Check the table FT their midpoints provided they fall within the classes including both bounds. FT if 1 slip in one of 'their midpoints', used outside the tolerance of bounds for M1, m1 only FT from M1 for intention 'their 210'/30 Following correct working On FT from incorrect mid points allow rounding or truncation of 'their final answer'
2(b) \quad $(=110)$ $\div 30$ $3.67(\mathrm{~mm})$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A2 } \end{aligned}$	CAO A1 for $3^{2 / 3}(\mathrm{~mm})$ or $3.6(66 \ldots \mathrm{~mm})$ which allows $3.6(\ldots$.$) ,$ 3.7 (mm) Allow A1 for a correct FT from an error in calculating 25×4.4 provided rounding to give 3 significant figures required and correct (e.g. 25×4.4 as 120 leading to an answer of 4 is AO)

\begin{tabular}{|c|c|c|}
\hline \(3 . \quad\) For all methods \& \& If an evaluation is given with incorrect units, award A0 on the first occasion then FT \\
\hline \begin{tabular}{l}
3. (Cost to make 150 boxes) \((150 \div 25) \div 2\) \\
or \(6 \times 50\) or equivalent \\
(£)3 or 300 (p) \\
(Cost of the chocolates) \(150 \times 4 \times 7\) \\
or \(600 \times 7\) or equivalent \\
4200(p) or (£) 42 \\
(Profit) \(0.2 \times(3+42)\) or equivalent \\
(£) 9 or \(900(\mathrm{p})\)
\end{tabular} \& M1
A1
M1
A1
M1
A1 \& FT \(0.2 \times\) ('their cost of boxes + their cost of chocolates') ISW \\
\hline \begin{tabular}{l}
3. Ālternative method 1: \\
(Each box of chocolates costs) \(4 \times 7+50 \div 25\)
\[
30(p)
\] \\
(Each box of chocolates sells for) \(30 \times 1.2\)
\[
36(p)
\] \\
(Profit) \((36-30) \times 150\) \\
(£) 9 or 900(p)
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT 'their derived 30p' (including omitting the box) \\
FT \(150 \times\) 'individual (sales - cost)' \\
ISW
\end{tabular} \\
\hline \begin{tabular}{l}
3. Alternative method 2 : \\
(Each box of chocolates costs) \(4 \times 7+50 \div 25\) \\
30(p) \\
(Profit for one box of chocolates) \(30 \times 0.2\) \\
6(p) \\
(Profit) \(6 \times 150\) \\
(£) 9 or 900(p)
\end{tabular} \& \[
\begin{aligned}
\& M 1 \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& M 1 \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT 'their derived 30p' (including omitting the box) \\
FT \(150 \times\) 'their profit per box' \\
ISW
\end{tabular} \\
\hline \begin{tabular}{l}
3. Alternative method 3: \\
(25 boxes of chocolates cost) \(4 \times 7 \times 25+50\) \\
\(750(p)\) or (£)7.50 \\
(Profit for 25 boxes of chocolates) \\
\(7() 50 \times\). \\
(£) 1.50 or 150 (p) \\
(Profit) 1 (.) \(50 \times 150 \div 25\) \\
(£) 9 or 900 (p)
\end{tabular} \& \[
\begin{aligned}
\& M 1 \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT 'their derived 7(.)50' (including omitting the box) \\
FT 'their profit for 25 boxes' \(\times 150 \div 25\) ISW
\end{tabular} \\
\hline \begin{tabular}{l}
3. Alternative method 4: \\
(25 boxes of chocolates cost) \(4 \times 7 \times 25+50\) \\
\(750(p)\) or (£) 7.50 \\
(Total cost to make) \(\quad 7() 50 \times 150 \div\). \\
(£) 45 or 4500 (p) \\
(Profit) \(45 \times 0.2\) or \(4500 \times 0.2\) \\
(£) 9 or 900 (p)
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
FT 'their derived 7(.)50' (including omitting the box) \\
FT \(0.2 \times\) 'their total cost to make' \\
ISW
\end{tabular} \\
\hline \begin{tabular}{l}
3. Âlternative method 5: \\
(Each box of chocolates costs) \(4 \times 7+50 \div 25\) \\
30(p) \\
(Total cost to make) (0.)30 \(\times 150\) \\
(£)45 or 4500(p) \\
(Profit) \(45 \times 0.2\) or \(4500 \times 0.2\) \\
(£) 9 or 900 (p)
\end{tabular} \& M1
A1

M1
A1

M1

A1 \& | FT 'their derived 30p' (including omitting the box) |
| :--- |
| FT $0.2 \times$ 'their total cost to make' |
| ISW |

\hline
\end{tabular}

Organisation and communication Writing	OC1 W1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
4. $4.2 \times(3 \div 2)$ or 4.2×1.5 or $4.2 \div \frac{2}{3}$ (Height) 6.3 (cm) $3.9 \div(3 \div 2) \text { or } \frac{3.9}{1.5} \text { or } 3.9 \times \frac{2}{3}$ (Pin length) 2.6 (cm)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Do not penalise any answers reversed in the answer space

5(a)	$\begin{gathered} t \leq 12 \\ \hline 46 \end{gathered}$	$\begin{gathered} t \leq 16 \\ \hline 52 \end{gathered}$	$\begin{gathered} t \leq 20 \\ 54 \end{gathered}$	B1	
5(b) Correct cumulative frequency diagram drawn, with points joined with a straight line or a curve				B2	FT only cumulative entries from (a) B1 for either - correct plots (but not joined or with spurious or incorrect straight line or curve), or - 'their plots' joined provided 5 or 6 plots are correct
5(c)	t ap	ents)		B2	STRICT FT 'their cumulative graph', i.e. correctly evaluated ' 60 - their 37 ' B1 for sight of 60 - 'their 37 ' If 'their graph' is not cumulative or shows bars, FT for ' 60 - their 37 ' provided a unique reading for 10 minutes (60 - 'their reading at 10 minutes) but award B1 only (not B2) If no marks, award SC1 for 23 (patient appointments) calculated or unsupported, when not from 'cumulative frequency graph', e.g. (18/2 $+6+2+6=) 23$
$5(\mathrm{~d})$	0)	$\begin{aligned} & 100 \times)_{1} \\ & (\%) \end{aligned}$	$-\frac{54}{60}(\times 100)$	M1 A1	FT 'their 54 ' (reading for $\mathrm{t} \leq 20$) provided >28 Do not accept an answer with incorrect units, e.g. '10 people'
5(e)	e in	ans	(minutes)	B2	Allow if calculated from the information in the table Must be correct to the nearest minute for 'their cumulative frequency graph' FT 'their cumulative frequency graph' Do not accept an answer from incorrect working, including without a cumulative graph seen B1 for either - sight of Monday median 8.3 to 8.7 (minutes), or - an answer for the difference in the medians in the range 2.8 to 3.2 (minutes) (from working with Monday median in the range 8.3 to 8.7 minutes) Apply the same tolerance of ± 0.2 (minutes) when following through from 'their graph' On FT, if 'their answer' \neq whole number of minutes, it must be rounded to the nearest minute

5(f) Sight of any one of:

- $\frac{4+24+18}{60}(\times 100)$
- $\quad 46(\times 100)$ 60
- 0.8×60 or equivalent
- 0.2×60 or equivalent

Conclusion, 'no (target not met)'
AND a correct evaluation:

- 76.666(\%) rounded or truncated
- 48 (appointments)
- 12 and ($60-12=) 48$ (appointments)

OR
12 and $(6+2+6=) 14$ (appointments)
6(a) (Volume of cylinder $=$) $\pi \times 20^{2} \times$
(Volume of sphere $=) \frac{4}{3} \times \pi \times 5^{3}$
(Number of spheres made $=$)

$$
\frac{\pi \times 20^{2} \times 1000}{4 / 3 \times \pi \times 5^{3}}
$$ or equivalent

$=2400$ (spheres)
6(b) $4 \times \pi \times r^{2}=320 \pi$

$$
\begin{aligned}
& r^{2}=\frac{320 \pi}{4 \pi} \\
& \text { or }(r=) \sqrt{\frac{320 \pi}{4 \pi}} \quad \begin{array}{r}
\text { or equivalent } \\
\\
\\
\\
\\
\\
=4=) \sqrt{80}
\end{array} \\
&
\end{aligned}
$$

e.g. $\frac{400000 \pi}{166.6(6) \pi}$ or $\frac{100000 \pi}{41.6(6) \pi}$ or equivalent

M1 for
$4 / 3 \times \pi \times 5^{3} \times$ number of spheres $=\pi \times 20^{2} \times 1000$
FT 'their 46' from an incorrect cumulative total in (a) (i.e. 'their value in the table for $\mathrm{t} \leq 12$ ')

A2 \quad FT for correctly evaluated use of 'their 46'
Allow for sight of
$46 \div 60=0.76(\ldots)$ or $100 \times 46 \div 60=76(\%)$
Allow, e.g. 'over 0.7' or 'over 70(\%) only provided the correct conclusion 'no' is given

If 48 is not evaluated, accept the time from 'their graph' for 48 appointments instead

A1 for a correct evaluation:

- $76 .(66 \ldots \%)$ rounded or truncated
- 'over 70\%' or 'over 0.7'
- $0.76(\ldots)$ or 0.77
- 48 (appointments)
- 12 (appointments)
(= 1256000 to 1257000)
May be implied in further work
B1 Or $\underline{500 \pi}$. (= 523 to 524)
3

A1 CAO
M1 May be implied in further working

1 May be implied in further working
B2

For B2, FT 'their derived 80 ' if possible
For B1, FT 'their derived 80' if possible
B1 for writing 80 as a product of 2 or more factors
where one of the factors OR the product of 2 of their factors is a square number
e.g. $16 \times 5,4 \times 20,2 \times 8 \times 5$, OR

B1 for writing $\sqrt{80}$ as a product of 2 or more factors where one of the factors OR the product of 2 of their factors is a whole number
e.g. $\sqrt{16} \times \sqrt{5}, \sqrt{4} \times \sqrt{20}, \sqrt{2} \times \sqrt{8} \times \sqrt{5}$

9. (Total SA of pillars =) $14 \times 4 \times 18$ (=1008)	B1	
(Total SA of other flat faces $=$) $100 \times 12 \times 2-\frac{\pi \times 10^{2}}{2} \times 8 \quad \begin{gathered} \text { or equivalent } \\ (=2400-400 \pi) \end{gathered}$	B2	B1 for $100 \times 12-\frac{\pi \times 10^{2}}{2} \times 4 \quad(=1200-200 \pi)$ OR B1 for $\frac{\pi \times 10^{2}}{2} \times 8 \quad(=400 \pi)$
(Total curved $S A=\frac{\pi \times 20}{2} \times 4 \times 4 \quad$ or equivalent	B1	
$\begin{aligned} & 14 \times 4 \times 18+100 \times 12 \times 2+\frac{\pi \times 20}{2} \times 4 \times 4-\frac{\pi \times 10^{2}}{2} \times 8 \\ & \text { or equivalent } \\ & =3408-240 \pi \quad\left(\mathrm{~m}^{2}\right) \end{aligned}$	M2 A1	M1 for the addition/subtraction of at least 3 correct terms CAO. ISW
9. Alternative method: (Area of front and back faces =) $\begin{aligned} & 100 \times 26 \times 2-4 \times\left(\frac{\pi \times 10^{2}}{2}\right.+14 \times 20) \times 2 \\ & \text { or equivalent } \\ &=5200-400 \pi-2240) \end{aligned}$	B2	B1 for $\left.100 \times 26-4 \times \frac{\left(\pi \times 10^{2}\right.}{2}+14 \times 20\right)$ B1 for $\left.4 \times \frac{\left(\pi \times 10^{2}\right.}{2}+14 \times 20\right) \times 2$
(Total curved $S A=) \frac{\pi \times 20}{2} \times 4 \times 4$ or equivalent $(=160 \pi)$ $(=448)$ (Inside of pillars $=$) $14 \times 4 \times 8$	B1 B1	
$\begin{aligned} & \text { (Total surface area =) } \\ & \begin{array}{c} \left.100 \times 26 \times 2-4 \times \frac{\pi \times 10^{2}}{2}+14 \times 20\right) \times 2+\frac{\pi \times 20}{2} \times 4 \times 4 \\ +14 \times 4 \times 8 \end{array} \end{aligned}$	M2	M1 for the addition/subtraction of at least 4 correct terms
$=3408-240 \pi \quad\left(m^{2}\right)$	A1	CAO. ISW

