GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS
UNIT 2 - INTERMEDIATE TIER 3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2022 MARKING SCHEME

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. (d) Alternative Method 1 \\
(Expected number of winners \(=7 / 12 \times 228\)) \(133(\) winners \()\) \\
(Expected number that don't win \(=228-133\)) 95 (non-winners) \\
(Amount taken \(=95 \times £ 2.50=\)) \\
(£)237.5(0) \\
(Expected profit \(=95 \times £ 2.50-133 \times £ 1=\)) \\
(£)104.5(0)
\end{tabular} \& \(B 1\)

$B 1$
$B 1$
$B 1$

$B 1$ \& | If 7/12 or correct \% or decimal seen in part (c), it must be used for this B1. |
| :--- |
| FT 'their 7/12' if less than 1×228. |
| Allow 133/228 or ' 133 out of 228'. |
| Must be whole number. |
| Award BO for $7 / 12 \times 228=0 \cdot 58(333 \ldots) \times 228=132 \text { winners. }$ |
| Award B0 for |
| $7 / 12 \times 228=0.6 \times 228=136$ or 137 winners. |
| FT 228 - 'their 133' (provided < 228). |
| FT £2.50 x 'their 95' provided <133. |
| (£)237.5(0) - (£) 133 |
| FT 'their (£)237.5(0)' - 'their (£)133'. |
| Award B1B1B1B0 for sight of $95 \times £ 2.50-133 \times £ 1$ with an incorrect final answer. |
| If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative. |

\hline | 4. (d) Alternative Method 2 |
| :--- |
| Working with 12 players |
| (Amount taken $=12 \times £ 2.50=$) |
| (£)30(.00) |
| (Expected prize money $=7 \times £ 3.50=$) |
| (£)24.5(0) |
| (Expected profit for 12 players = $(£) 30(.00)-(£) 24.5(0)=)$ |
| (£)5.5(0) |
| (Expected profit for 228 players $=\frac{228}{12} \times(\mathfrak{£}) 5.5(0)=1$ |
| (£) 104.5(0) | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 | \& | FT 'their 7' (provided < 12). |
| :--- |
| FT 'their (£)30(.00)' - 'their (£)24.5(0)'. |
| FT $19 \times$ 'their (£)5.5(0)'. |
| If the FT results in a loss, the 'Loss' must be stated, or the answer left as a negative. |

\hline | Organisation and Communication. |
| :--- |
| Accuracy of writing. | \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| - write a conclusion that draws together their results and explains what their answer means |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

7. (a) $12 p-20$	B1	Must be an expression. Mark final answer.
7. (b) $\begin{aligned} 8 m & =w+3 & \text { or } & w+3 & =8 m & \text { or }-8 m \\ m & =\frac{w+3-3}{8} & \text { or } & \frac{w+3}{8} & =m & \text { or } \end{aligned} \quad m=\frac{-w-3}{-8}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $-8 m=-(w+3)$. FT only from $\pm 8 m= \pm w \pm 3$, stated or implied. (note: $8 m=w+3$ or $-8 m=-w-3$ will have already gained the previous B 1). B 1 B 0 for $-m=\frac{-3-w}{8}$ or equivalent. Mark final answer. Note Allow B1B0 for $m=(w+3) \div 8$ with or without brackets. Allow B1B0 for $\frac{w+3}{8}$ (' $m=$ ' missing).
7. (c) $y^{2}+y-20$ ISW	B2	Allow $y^{2}+1 y-20$. Award B 1 for one of the following: - $y^{2}+5 y-4 y-20$ - $y^{2}+5 y-4 y+-20$ - $y^{2}+5 y+-4 y-20$ - $y^{2}+5 y+-4 y+-20$ - $y^{2}+k y-20$ (where $k \neq 0$ or 1) - $y^{2}+(1) y+t$ (where $\left.t \neq-20\right)$ - for sight of y^{2} AND $+5 y$ AND $-4 y$ AND - 20 but not in an expression.
8. corresponding angles	B1	
9. Use of 129.5 / time $129 \cdot 5 \div 3 \cdot 5$ or equivalent 37 (miles per hour)	M1 M1 A1	Allow M1 even for e.g. $129 \cdot 5 / 3$ hours 30 mins or $129 \cdot 5 / 3 \cdot 3(0)$ or 129.5/210. Must be a complete and correct method e.g. $129 \cdot 5 / 210 \times 60$. CAO. Award M1M0AO for sight of unsupported $0 \cdot 61(6666 \ldots .$.$) (use of 129 \cdot 5 / 210$) OR 39•24(2424...) (use of 129.5/3.3).

10. (Diameter =) $24.8 \div 2 \times 3$ OR
(Radius =) $24.8 \div 2 \times 3 \div 2$ or equivalent
(Diameter =) $37.2(\mathrm{~cm})$ OR (Radius =) $18 \cdot 6(\mathrm{~cm})$

$$
\pi \times\left(\frac{37.2}{2}\right)^{2} \times 24.8 \text { or } \pi \times 18.6^{2} \times 24.8
$$

$$
=27000\left(\mathrm{~cm}^{3}\right)
$$

A1 Sight of 1086 to $1087\left(\mathrm{~cm}^{2}\right)$ (base area calculated with radius 18.6) OR 4345 to $4348\left(\mathrm{~cm}^{2}\right)$ (base area calculated with diameter) implies first M1 A1.
If diameter AND radius given and radius $\neq 18.6$ either:

- \quad award M1A0 (for sight of diameter $=37 \cdot 2$) if their stated radius is then used to find the volume of the cylinder ($2^{\text {nd }} \mathrm{M}$ mark is awarded) or
- award M1A1 (for sight of diameter $=37 \cdot 2$) if their incorrect radius is not used to find the volume of the cylinder ($2^{\text {nd }} \mathrm{M}$ mark is not awarded).

M1 May be seen in parts.
Accept $3.14 \times 18.6^{2} \times 24.8$ or equivalent.
FT 'their stated radius' OR 'their stated diameter', provided it is halved at the appropriate stage.

A2
For A2, must be correct to 2sf.

A1 for an answer between 26940 and $26960\left(\mathrm{~cm}^{3}\right)$ inclusive.

Note:
(Diameter $=$) $24.8 \div 5 \times 3$ OR
(Radius =) $24.8 \div 5 \times 3 \div 2$
(Diameter =) $14.88(\mathrm{~cm})$ OR

(Radius $=)$	$7.44(\mathrm{~cm})$	A 0
$\pi \times 7.44^{2} \times 24.8$	M 1	
$4300\left(\mathrm{~cm}^{3}\right)$	A 2	

A1 for answer between 4310 and $4314\left(\mathrm{~cm}^{3}\right)$ inclusive
If M0 (2 ${ }^{\text {nd }} \mathrm{M}$ mark) then award SC1 for an answer of either:

- $\quad 110000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 37 \cdot 2^{2} \times 24 \cdot 8$ rounded correctly) OR
- $\quad 17000\left(\mathrm{~cm}^{3}\right)$ (from use of $\pi \times 14.88^{2} \times 24.8$ rounded correctly).
FT 'their stated diameter' correctly rounding to 2sf for this SC1.

\begin{tabular}{|c|c|c|}
\hline 11. $\left(B C^{2}=\right) 9 \cdot 6^{2}+12 \cdot 8^{2}$ or equivalent
$$
\begin{aligned}
& \left(B C^{2}=\right) 256 \text { or }(B C=) \sqrt{ } 256 \\
& (B C=) 16(\mathrm{~cm}) \\
& C D=2 \times 60 \div 16 \text { or equivalent } \\
& (C D=) 7.5(\mathrm{~cm})
\end{aligned}
$$ \& M1
A1
A1

M2

M \& | note: $\left(B C^{2}=\right) 92 \cdot 16+163 \cdot 84$ (ignore place values for M1) |
| :--- |
| Award M1 for the correct values substituted into the Cosine rule. |
| Allow ($B C=) \pm 16$ (cm). |
| FT from M1 for the correctly evaluated square root of 'their 256 ' provided their answer $>12 \cdot 8$. |
| FT 'their derived BC^{\prime} OR 'their stated 16' (not derived) provided 12.8 < 'their stated 16 ' $22 \cdot 4$. |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2A0 if contradicted by CD $=7.5$ (cm). |

\hline | 11. Alternative method: |
| :--- |
| Correct use of 'two-step' method $\begin{gathered} (B C=) 16(\mathrm{~cm}) \\ C D=2 \times 60 \div 16 \text { or equivalent } \end{gathered}$ $(C D=) 7.5(\mathrm{~cm})$ | \& M2

A1
M2

A1 \& | A partial trigonometric method is MO. |
| :--- |
| FT 'their derived BC' OR 'their stated 16' (not derived) provided 12.8 < 'their stated 16 < 22.4 . |
| Award M1 for $60=1 / 2 \times 16 \times C D$ or equivalent. |
| Allow M2A1 for a correct embedded answer BUT M2AO if contradicted by $C D \neq 7.5$ (cm). |

\hline 12. (a) $2 x(4 x+3 y)$ \& B2 \& Award B1 for $2 x(4 x \pm \ldots \ldots .$.$) or 2 x(\ldots \ldots .+3 y)$ Award B1 for a partial factorisation. i.e. $2\left(4 x^{2}+3 x y\right)$ or $x(8 x+6 y)$. Mark final answer.

\hline 12. (b)(i) $\quad(x+8)(x+5) \quad$ ISW \& B2 \& B 1 for ($x \ldots 8)(x \ldots 5)$.

\hline | 12. (b)(ii) Any valid explanation |
| :--- |
| e.g. "you could expand the two brackets" "expanding is the opposite of factorising" "multiply the brackets together" "solve $(x+8)(x+5)=0$, and then substitute the value(s) of x into $x^{2}+13 x+40$. It should give 0 ." "replace x in the brackets and expression with the same value. You should get the same answer." | \& E1 \& | Allow |
| :--- |
| "the two numbers need to add to 13 , but multiply to make 40" |
| "Use FOIL (CAMO) to check" or other names explaining the method. |
| Allow method shown to expand brackets for example: |
| Do not accept |
| " $(x+8)(x+5)=x^{2}+13 x+40$ " without further working |
| "taking out the brackets" |
| "reverse the calculation" |

\hline
\end{tabular}

13. (a) $\begin{aligned} (x=) & 14.5 \times \sin 42 \\ & =9.7(02 \ldots) \end{aligned}$	M2 A1	Award M2 for $14.5 \times \cos 48$ or $\frac{14.5 \times \sin 42}{\sin 90}$ M1 for $\sin 42=\frac{x}{14.5}$ or $\cos 48=\frac{x}{14 \cdot 5}$ or $\frac{x}{\sin 42}=\frac{14 \cdot 5}{\sin 90}$ Allow 10 from correct working. Award M2 A0 for an unsupported answer of $-13 \cdot 2895 \ldots$ (radians) or $8.88715 \ldots$ (gradians).
13. (a) Alternative method: Correct use of 'two-step' method. $(x)=9 \cdot 7(02 \ldots)(\mathrm{cm})$	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO. Accept an answer that rounds to $9.7(\mathrm{~cm})$ Award M2 AO for an answer of -13.2895... (radians) or 8.88715.... (gradians).
13. (b) $(y=) \cos ^{-1} \frac{13 \cdot 5}{15 \cdot 8}$ Correct evaluation in the range 31.3 to 31.4	$\mathrm{M} 2$ A1	M1 for $\cos y=\frac{13.5}{15 \cdot 8}(=0.854 .$. Allow 31 from correct working. Allow correct angles given in radians ($0 \cdot 5463$..) or gradians (34-7812...) Note: $\cos y=0.85 y=31.788 \ldots$ is awarded M2A0.
13. (b) Alternative method: Correct use of 'two-step' method. Correct evaluation in the range 31.3 to 31.4	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO. Allow 31 from correct working. Allow correct angles given in radians (0.5463 ..) or gradians (34-7812....)
$\begin{aligned} & \text { 14. (a) Any intention of } \\ & \text { length } \times \text { width } \times \text { height }=132 \\ & \text { e.g. } \quad 5 x\left(x^{2}+3\right)=132 \\ & \\ & 5 \times x \times\left(x^{2}+3\right)=132 \text { or } \\ & \\ & 5 x \times\left(x^{2}+3\right)=132 \text { or equivalent } \end{aligned}$	B1	Must be = 132 . May be seen in parts. Do not allow missing brackets e.g. $5 \times x \times x^{2}+3=132$.
14. (b)(i) One correct evaluation $2 \leq x \leq 3$ 2 correct evaluations $2.55 \leq x \leq 2 \cdot 75$, (one value <132, one value >132) 2 correct evaluations $2.55 \leq x \leq 2 \cdot 65$, (one value <132, one value >132) $x=2 \cdot 6$	B1 B1 M1 A1	Correct evaluation regarded as enough to identify if <132 or >132. If evaluations not seen accept 'too high' or 'too low'. Look out for testing $5 x^{3}+15 x-132=0$ or $x^{3}+3 x=26 \cdot 4$ or equivalent
14. (b)(ii) An answer in the range 9.76 to 10.16 (cm)	B1	Answer may be shown on the diagram. FT 'their $2 \cdot 6^{\prime 2}+3$. FT $132 \div(5 \times$ 'their x).

