шјес cbac

GCSE MARKING SCHEME

AUTUMN 2021

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2021 MARK SCHEME

5.(a) (0)7:45 23 (March)	B2	B1 for each. B0 for (0)7:45 p.m.
5.(b) Sight of 5 miles $\equiv 8 \mathrm{~km}$ or equivalent. Shows 15 miles to be 24 km AND a valid statement e.g. 'yes (it's nearly 25 km '), 'no (it's only 24 km ').	B1 B1	Allow a more accurate conversion (5 miles $\equiv 8$ to 8.05 km). Do not accept 3 miles $\equiv 5 \mathrm{~km}$ ' 15 miles is 24 km ' with no statement is B1B0. Accept a one word decision of 'Yes' or 'No' as a statement.
Alternative method Sight of $8 \mathrm{~km} \equiv 5$ miles or equivalent. Shows 25 km to be 15.625 miles AND a valid statement e.g. 'yes (it's just over 15 miles'), 'no (it's over 15 miles)'.	B1 B1	Allow a more accurate conversion ($8 \mathrm{~km} \equiv 4.97$ to 5 miles). Do not accept $5 \mathrm{~km} \equiv 3$ miles ' 25 km is 15.625 miles' with no statement is B1B0. Accept a one word decision of 'Yes' or 'No' as a statement.
6. Correct strategy of $\sqrt{(\text { Area } A B C D ~-~ 32) ~}$ (Area $\mathrm{ABCD}=$) $81\left(\mathrm{~cm}^{2}\right)$ (Area PQRS = 81-32 =) $49\left(\mathrm{~cm}^{2}\right)$ $(P Q=\sqrt{49}=) 7(\mathrm{~cm})$	$\begin{aligned} & \hline \text { S1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT 'their stated area of ABCD' - 32. FT $\sqrt{ }$ 'their stated area of PQRS' but not $\sqrt{ } 32$ or $\sqrt{ } 9$ A final answer of 7(cm) gains all four marks. May be seen on the diagram. (FT answers must be rounded or truncated to 1dp or more)
7.(a) 1.442	B2	B1 for sight of 1.44(1.....) or 1.44(2.....)
7.(b) 191	B3	B2 for sight of 190(•5.....) or $190 \cdot 6$ B1 for sight of 280.
8. $\quad(P($ Gold $)=) 1-0.68-0.22$ $=0 \cdot 1$ 22 people choose silver AND 10 people choose gold $\begin{aligned} &(\text { Profit }=) \quad 100 \times(£) 2-22 \times(£) 3-10 \times(£) 8 \\ &=(£) 54 \end{aligned}$	M1 A1 B1 M1 A1	May be seen in the table. FT $100 \times$ 'their $0 \cdot 1$ '. The 10 implies previous M1A1. The 22 and 10 may be seen in further work. FT 'their stated number of winners (silver and gold)'.
$\frac{\text { Alternative method1 }}{(P(\text { Gold })=) 1-0.68-0.22=0.1}$ 22 people choose silver AND 10 people choose gold $\begin{aligned} (\text { Profit }=) & 68 \times(£) 2-22 \times(£) 1-10 \times(£) 6 \\ & =(£) 54 \end{aligned}$	M1 A1 B1 M1 A1	May be seen in the table. FT $100 \times$ 'their 0.1'. The 10 implies previous M1A1. The 22 and 10 may be seen in further work. FT 'their stated number of winners (silver and gold)'.
$\left.\begin{array}{l} \begin{array}{r} \text { Alternative method 2. } \\ (P(\text { Gold })=0.1-0.68-0.22 \end{array} \\ \begin{array}{rl} (\text { Profit per game }=)(£) 2-0.22 \times(£) 3-0.1 \times(£) 8 \\ & =(£) 0.54 \end{array} \\ (\text { Total profit }=£ 0.54 \times 100=) \\ (£) 54 \end{array}\right]$	M1 A1 M1 A1 B1	May be seen in the table. FT'their 0.1. FT 'their derived $£ 0 \cdot 54$ '.
$\begin{aligned} & \begin{array}{c} \begin{array}{c} \text { Alternative method 3. } \\ (P(\text { Gold })=) 1-0.68-0.22 \end{array} \\ \begin{array}{c} \text { Profit per game }=0.1 \\ \\ (\text { Total profit }=£ 0.54 \times(£) 2-0.22 \times(£) 1-0.1 \times(£) 6 \\ =(£) 0.54 \end{array} \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & B 1 \\ & \hline \end{aligned}$	May be seen in the table. FT'their 0.1. FT 'their derived $£ 0 \cdot 54$ '.
$\begin{array}{llll}9 .(a) & -1.3 & 0.4 & 2.1\end{array}$	B2	B1 for two correct in the correct position. OR for $-3,-1 \cdot 3,0 \cdot 4$.
9.(b) 10(th term)	B1	Allow B1 for 10(th) and 14. B0 if only 14 given in answer space. NOTE: If answer to $9(a)$ is $-3,-1 \cdot 3,0 \cdot 4$ then allow an answer of 11(th term)

\begin{tabular}{|c|c|c|}
\hline 10.
\[
\begin{array}{ll}
\& 4(3 a-7)+2(5 a+4) \\
=12 a-28+10 a+8 \& \text { or equivalent. } \\
=12 a v i v a l e n t .
\end{array}
\]
\[
=22 a-20(\mathrm{~cm}) \text { or } 2(11 \mathrm{a}-10)(\mathrm{cm})
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
For a correct expression for the perimeter. \\
For removal of brackets \\
FT only from \(2(3 a-7)+(5 a+4)\) or equivalent \\
OR \(2(3 a-7)+2(5 a+4)\) or equivalent. \\
For collection of terms \\
FT if of equivalent difficulty. \\
Mark final answer.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \qquad \begin{array}{l}
2[2(3 a-7)+(5 a+4)] \\
=12 a-28+10 a+8 \text { or } 2(6 a-14+5 a+4) \\
=
\end{array} \\
\& \qquad \begin{array}{l}
22 a-20(\mathrm{~cm}) \text { or } 2(11 a-10)(\mathrm{cm})
\end{array}
\end{aligned}
\] \& B1
\(B 1\)

$B 1$ \& | For a correct expression for the perimeter. |
| :--- |
| For removal of brackets (within 'square brackets') |
| FT only from |
| $2[2(3 a-7)+2(5 a+4)]$ or equivalent. |
| For collection of terms |
| FT only from |
| $2[2(3 a-7)+2(5 a+4)]$ or equivalent. |
| FT if of equivalent difficulty. |
| Mark final answer |

\hline 11. (number of part-time in North Wales $=\frac{90}{360} \times 96$
OR (number of full-time in North Wales $=) \frac{144}{360} \times 150$
(number of part-time in North Wales =) 24
(number of full-time in North Wales =) 60

(Probability from North Wales $=$) $\frac{84}{246}$ or equivalent ISW \& M1 \& | Or equivalent |
| :--- |
| Answers may be seen on the diagram. |
| An answer (or sight) of 24 implies M1. |
| An answer (or sight) of 60 implies M1. |
| FT ('their 24 ' + 'their 60') /246 provided M1 gained and ('their 24 ' + 'their 60') < 246. |
| Penalise incorrect notation -1. e.g. ' 84 in 246 '. |

\hline | 12. |
| :--- |
| One correct evaluation $2 \leq x \leq 3$ |
| 2 correct evaluations $2 \cdot 25 \leq x \leq 2 \cdot 45$, one <20, one >20. |
| 2 correct evaluations $2 \cdot 25 \leq x \leq 2 \cdot 35$, one <20, one >20. $x=2 \cdot 3$ | \& B1

B1

M1

A1 \& | Correct evaluation regarded as enough to identify if <20 or >20. If evaluations not seen accept 'too high' or 'too low'. |
| :--- |
| Look out for testing $x^{3}+3 x-20=0$ |
| Note |
| Evidence for M1 must be seen before A1 can be awarded. |

\hline
\end{tabular}

13. $\begin{array}{r} 5 x-17+2 x+9+x+20=180 \\ 8 x=168 \\ x=21 \end{array}$ Substituting $x=21$ into at least one expression. $(5 x-17=) 88\left(^{\circ}\right)\left(2 x+9 \Rightarrow 51\left(^{\circ}\right)(x+20=) 41\left(^{\circ}\right)\right.$ (So not a right-angled triangle)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	F.T. from $\mathrm{ax}=\mathrm{b}$. Allow all 3 marks for $\mathrm{x}=21$. If $x \neq 21 \mathrm{FT}$ 'their derived value of x '. F.T. for this A 1 if $\mathrm{x} \geq 4$. Any two of these expressions correctly evaluated with no incorrect evaluation, provided the sum of the two found is >90. (statement not required). Note If further work indicates that the values found are not treated as angles (e.g. showing $51^{2}+41^{2} \neq 88^{2}$) then award final MOAO.
Alternative method $\begin{array}{ccccc} \hline 5 x-17=90 & \text { OR } & 2 x+9=90 \quad \text { OR } & x+20=90 \\ x=21 \cdot 4 & \text { AND } & x=40 \cdot 5 & \text { AND } & x=70 \end{array}$ Then verifying: If $x=21 \cdot 4: \quad 5 x-17+2 x+9+x+20=183.2$ AND If $x=40 \cdot 5: \quad 5 x-17+2 x+9+x+20=336$ AND $\text { If } x=70: \quad 5 x-17+2 x+9+x+20=572$ (So not a right-angled triangle)	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$ A2	Award A1 for any one of these: $x=21 \cdot 4 \quad O R \quad x=40 \cdot 5 \quad O R \quad x=70$ Award A1 for any one of these: If $x=21 \cdot 4: \quad 5 x-17+2 x+9+x+20=183.2$ OR If $x=40 \cdot 5: \quad 5 x-17+2 x+9+x+20=336$ OR If $x=70: \quad 5 x-17+2 x+9+x+20=572$
$\text { 14. } \begin{array}{r} (\mathrm{AB}=) 13 \cdot 8 \times \cos 41 \text { OR } 13.8 \times \sin 49 \\ \\ =10 \cdot 4(\ldots)(\mathrm{cm}) \end{array}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \end{aligned}$	$M 1$ for $\cos 41=\frac{A B}{13 \cdot 8} \quad O R \quad \sin 49=\frac{A B}{13 \cdot 8}$
Alternative method: Correct use of 'two-step' method. $(A B)=10 \cdot 4(\ldots)(\mathrm{cm})$	$\begin{aligned} & M 2 \\ & \text { A1 } \\ & \hline \end{aligned}$	A partial trigonometric method is MO. Accept an answer that rounds to $10 \cdot 4(\mathrm{~cm})$
15.a(i) $\mathrm{x}^{3}+7 \mathrm{x}$	B2	B1 for sight of $x^{3}+\ldots \ldots$. OR $\ldots \ldots . .+7 x$. Do not accept $x \times x \times x+x \times 7$ etc. Mark final answer.
$\text { 15(a)(ii) } \begin{gathered} 3 x^{2}-4 x-15 x+20 \\ 3 x^{2}-19 x+20 \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Must be an expression. FT from an error in only one term (out of 4) only if of the form $\mathrm{ax}^{2} \pm \mathrm{bx} \pm \mathrm{cx} \pm \mathrm{d}$.
15.(b)(i) $5 \mathrm{n}-27<n \quad$ OR $\mathrm{n}>5 \mathrm{n}-27$	B2	Allow B 2 for an equivalent correct inequality. e.g. $4 n-27<0$. B1 if \leq or \geq used in a 'correct' inequality. OR B1 for $5 n-27>n \quad$ OR $n<5 n-27$
$\begin{aligned} \text { 15.(b)(ii) } \begin{aligned} & 4 \mathrm{n}<27 \\ & \mathrm{n}<\frac{27}{4} \\ & \text { (Greatest number of clocks }=\text {) } \end{aligned} \\ \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~B} 1 \end{aligned}$	FT 'their inequality' if of equivalent difficulty. FT only from an $<b$ OR $a n \leq b$ OR an $>b$ OR $a n \geq b$. FT only from $\mathrm{n}<\mathrm{c}$ where c is positive OR $\mathrm{n} \leq \mathrm{d}$ where d is positive and not an integer An answer of 6 gains all 3 marks.

16.(a)	$\mathrm{N} \div 1.04$	B1	
16.(b)	$248 \cdot 832$	B2	Allow B2 if $248 \cdot 832$ seen then corrected to a final answer of 249 or $248 \cdot 8(.$.$) .$ If B2 not awarded, B1 for final answer of 249 or $248 \cdot(\ldots)$ i.e. $248 \cdot 832$ not seen. B1 for sight of $100 \times 1 \cdot 2^{5}$ or for equivalent calculations, e.g. 144×1.2^{3} or $100 \times 1 \cdot 2 \times 1 \cdot 2 \times 1 \cdot 2 \times 1 \cdot 2 \times 1 \cdot 2$ (may be seen in stages) B1 for a final answer of 298-5984.
	$\begin{aligned} & (x-6)(x+2) \\ & (x=) 6 \quad \text { AND } \quad(x=)-2 \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for ($x \ldots 6$) ($x \ldots 2$). Strict F.T. from their brackets. Penalise change of letter -1 . Allow the following. $\begin{array}{cccc}B 2 \text { for } & x-6(=0) & \text { AND } & x+2(=0) \\ & (x=) 6 & \text { AND } & (x=)-2\end{array}$ B1 for $x+6(=0)$ AND $x-2(=0)$ $(x=)-6 \quad$ AND $\quad(x=) 2$ (B1) FT B1 if only $(x=) 6$ AND $(x=)-2$ seen. (B1) Use of quadratic formula would only lead to this B1. Mark final answer.

