MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS Mark Scheme - Summer 2014

\begin{tabular}{|c|c|c|c|}
\hline Q \& Additional Mathematics Summer 2014 \& Marks \& Final \\
\hline 4 \& \[
\begin{aligned}
\& \{20(2 x)-15(x-7)+12(3 x+1)\}(/ 60) \\
\& \{40 x-15 x+105+36 x+12\} \quad(/ 60) \\
\& \quad(61 x+117) / 60 \text { or showing LHS } \equiv \text { RHS }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
A1
\[
4
\]
\end{tabular} \& \begin{tabular}{l}
Attempt to use common denominator \\
Or equivalent \\
B1 for 1 slip (e.g-105) \\
Convincing must follow from fully correct working at each stage \\
If no denominator then M0 B1 B1 A0, however if denominator replaced later all marks are allowable
\end{tabular} \\
\hline 5 \& (a) \((y+\delta y=) \quad(x+\delta x)^{2}+8(x+\delta x)\) Intention to subtract \((y=) x^{2}+8 x\) to find ठy
\[
\begin{aligned}
\& (\delta y=) \quad 2 x \delta x+(\delta x)^{2}+8 \delta x \\
\& \text { Dividing by } \delta x \text { and } \lim \delta x \rightarrow 0 \\
\& \text { dy/dx }=\lim \delta y / \delta x=2 x \\
\& +8
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
Or alternative notation. Allow if final bracket omitted \\
Accept \(\delta x^{2}\) as meaning \((\delta x)^{2}\) \\
FT equivalent level of difficulty \\
CAO. Must follow from correct working and notation \\
All notation throughout the working must be correct in order to award the final A1 \\
Use of dy/dx throughout max 4 marks only, final A0
\end{tabular} \\
\hline 6 \& \begin{tabular}{l}
(a) Multiplier \((3-\sqrt{ } 2) /(3-\sqrt{ } 2)\) \\
Denominator
\[
\begin{aligned}
\& 9+3 \sqrt{ } 2-3 \sqrt{ } 2-2 \text { OR } 9-2 \text { OR } 7 \\
\& 5(3-\sqrt{2}) / 7 \quad \text { or }(15-5 \sqrt{ } 2) / 7
\end{aligned}
\] \\
(b)(i) \(6 x^{10 / 4} / x^{3 / 2}\) or \(6 x^{5 / 2} / x^{3 / 2}\)
\[
=6 x
\] \\
(ii) Correctly extracting a factor of (7) \(\mathrm{x}^{1 / 7}\) (numerator), or
\[
\begin{array}{llll}
\underline{7 x^{1 / 7}} \& \underline{28\left(x^{1 / 7}\right)}+\underline{x^{2 / 7}} \text { or } \& \underline{28+} \\
7\left(x^{1 / 7}\right) \& x^{1 / 7} \& \\
\& \& \& 7+x^{1 / 7}
\end{array}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1 \\
7
\end{tabular} \& \begin{tabular}{l}
CAO. Mark final answer \\
Unsupported answer is awarded no marks. \\
Or equivalent first stage of working with indices \\
Allow incorrect evaluation of \(2 \times 3\) \\
CAO. Accept \(6 x^{1}\) \\
CAO. Mark final answer
\end{tabular} \\
\hline 7 \& \begin{tabular}{l}
\[
\text { (a) } \begin{aligned}
\mathrm{DE}^{2} \& =(-1-5)^{2}+(13-5)^{2}\left(=6^{2}+8^{2}\right) \\
\mathrm{DE} \& =\sqrt{ } 100(=10)
\end{aligned}
\] \\
(b) Gradient DE (13-5)/(-1-5) \(=-8 / 6(=-4 / 3\) or 1.33..)
\[
\begin{aligned}
\& \text { (c) } \frac{y-13}{x--1} \text { OR } \underset{x-5}{x-5} \text { equated to }-4 / 3 \\
\& \text { or } 13=-4 / 3 \times-1+c \text { or } 5=-4 / 3 \times 5+\text { c } \\
\& 3(y-13)=-4(x+1) \text { or } 3(y-5)=-4(x-5)
\end{aligned}
\]
or
\[
(y-13)=-4 / 3(x+1) \text { or } c=35 / 3
\]
\[
3 y-39=-4 x-4 \text { or } 3 y-15=-4 x+20
\] or
\[
y=-4 x / 3+35 / 3
\]
\[
4 x+3 y=35
\]
\end{tabular} \& M1
A1
M1
A1
M1

M1
M1
A1
A1

8 \& | Or equivalent. Allow 1 slip or error CAO |
| :--- |
| Do not ignore incorrect cancelling, mark final answer |
| Allow -1.3 |
| FT their gradient |
| Implies $1^{\text {st }} \mathrm{M} 1$ |
| FT from 1 arithmetical error, and for their gradient from (b) |
| OR equivalent correct expansion of brackets, unsimplified. FT from the 1 error and for gradient from (b) |
| CAO or a multiple of $4 x+3 y=35$. Must be in this form |
| Accept $3 y+4 x=35$, but do not accept $4 x+3 y-35$ $=0$ |
| Candidates may use the mid-point (2, 9), follow mark scheme as given. With evidence of attempting to find mid point, with incorrect mid-point, penalise -1 then follow mark scheme as given. |

\hline
\end{tabular}

Q	Additional Mathematics Summer 2014	Marks	Final
8	```(dy/dx=) \(12 x^{2}-12\) \(\mathrm{dy} / \mathrm{dx}=0\) or \(12 \mathrm{x}^{2}-12=0\) \(x=1 \quad\) and \(\mathrm{y}=\) \(x=-1\) and \(y=\) 15 \(d^{2} y / d x^{2}=24 x\) \((-1,(15)): \mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}<0\), point is a maximum (\(1,(-1)): \mathrm{d}^{2} y / \mathrm{dx}^{2}>0\), point is a minimum```	B1 M1 A1 A1 M1 A1 A1 7	FT their dy/dx form $\mathrm{ax}^{2}+\mathrm{b}$ Answer only, no working shown M0 A0 A0 Or first derivative test, interpretation of first derivative test. Or alternative. FT for their x value FT for their other x value provided this does not have the same interpretation as the first x value Answer only, no working shown M0 A0 AO If $d^{2} y / d x^{2}=n x$ where $n \neq 0$ and test applied correctly then SC2 instead of final A1, A1 (as M1 has not been awarded))
9	```Sight of \(\cos 45^{\circ}=1 / \sqrt{2}\) or \(\sqrt{2} / 2\) OR \(\sin 45^{\circ}=1 / \sqrt{ } 2\) or \(\sqrt{2} / 2\) \(\cos 45^{\circ}=\mathrm{DB} / 4 \quad\) OR \(\quad \sin 45^{\circ}=\mathrm{DB} / 4\) \(\mathrm{DB}=4 / \sqrt{ } 2\) or \(2 \sqrt{ } 2\) Sight of \(\cos 30^{\circ}=\sqrt{3} / 2\) \(\cos 30^{\circ}=\mathrm{BC} / \mathrm{DB}\) BC \(=\sqrt{ } 3 / 2 \times 4 / \sqrt{ } 2\) OR BC \(=\sqrt{ } 3 / 2 \times 2 \sqrt{ } 2\) OR \(B C=\sqrt{ } 3 \sqrt{ } 2\) \(\mathrm{BC}=\sqrt{6} \quad(\mathrm{~cm})\)```	B1 M1 A1 B1 M1 A1 A1 7	Alternative method for first 2 marks: $D B=A D(=x)$, hence $x^{2}+x^{2}=4^{2}$ B1 $2 x^{2}=16 \text { or } x^{2}=16 / 2 \text { or } x^{2}=8$ M1 B0 if not seen, allow embedded sight Working must be shown B0 if not seen, allow embedded sight Working must be shown FT their DB provided working with surd CAO from convincing working involving surds seen. Mark final answer
10	(a) $(3)^{3}+5(3)^{2}+2(3)-8(=27+45+6-$ 8) $=70$ (b)(i) Substitute $\mathrm{x}=1$ Showing $f(1)=0$ (ii) $(x-1)\left(x^{2}+b x+c\right)$ or intention to divide by $(\mathrm{x}-1)$ with x^{2} shown $\begin{aligned} & ((x-1)) \quad\left(x^{2}+6 x+8\right) \\ & \quad((x-1))(x+4)(x+2) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A2 } \\ \\ \text { A1 } \\ 8 \end{gathered}$	Or division method giving $\mathrm{x}^{2}+8 \mathrm{x} \ldots$ Or division method giving $x^{2}+6 x \ldots$ Convincing, working shown ($1+5+2-8$) Allow $1^{3}+5(1)^{2}+2(1)-8=0$ A1 for +6 x or +8 . Or use of factor theorem A1 ($\mathrm{x}+4$), A1 ($\mathrm{x}+2$) CAO. Mark final answer, but ignore attempts to 'solve'
11	(a) $1 / 2 \mathrm{y}(\mathrm{x}+\mathrm{x}+4)=28$ or equivalent $y(x+y)=43$ or equivalent Expanding and simplifying both $\begin{aligned} & \text { (b) }(x y=) 28-2 y=43-y^{2} \text { or equivalent } \\ & \text { AND } \mathrm{y}^{2}-2 \mathrm{y}-15=0 \text { or }-\mathrm{y}^{2}+2 \mathrm{y}+15 \\ & =0 \\ & \qquad(\mathrm{y}-5)(\mathrm{y}+3)=0 \\ & \mathrm{y}=5(\text { and } \mathrm{y}=-3) \\ & (\mathrm{x}=) 3.6(\mathrm{~cm}) \text { and }(\mathrm{x}+4=) 7.6(\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \text { A1 } \\ 7 \end{gathered}$	Accept $\mathrm{xy}+4 \mathrm{y} / 2=28$, do not accept $\mathrm{xy}+2 \mathrm{y}=28$ Convincing $\mathrm{xy}=28-2 \mathrm{y}$ AND $\mathrm{xy}=43-\mathrm{y}^{2}$ For correct quadratic equated to zero OR from formula method or completing square $y=(2 \pm \sqrt{64}) / 2$ CAO. Negative value not required, ignore CAO. Must be from positive y only Trial and improvement methods are not accepted
12	(a) $\begin{aligned} & 12 x^{5}+3 \\ & 60 x^{4}\end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B3 } \\ \text { B1 } \\ \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 11 \end{gathered}$	FT to $2^{\text {nd }}$ B1 from $d y / d x=k x^{n}(+m)$ B1 for each term. Accept unsimplified. ISW Award if at least B1 given for integration B1 for $4 x^{2} / 2$ or x FT their integration. Intention to use 5, 2 and subtract FT for correct use of limits CAO, not FT. Answer only, no working shown, M0 A0 A0

Q	Additional Mathematics Summer 2014	Marks	Final
13	(a) $2 x+4 y=7$ and $x+2 y=7$ selected Explanation, e.g. showing or sight of $m=-$ $1 / 2$ for both (b) Either $2 x+4 y=7$ and $4 x-2 y=7$, or $\quad x+2 y=7$ and $4 x-2 y=7$ Explanation, e.g. showing or sight of $m_{1}=-1 / 2 \& m_{2}=2$ Showing $-1 / 2 \times 2=-1$ or states 'one (gradient) is the negative reciprocal of the other (gradient)' or similar	B1 E1 B1 E1 E1 5	Depends on B1 Depends on B1 Depends on B1
14	Method to solve simultaneously, e.g. use of $y=4-x$ or $x=4-y$ into the first equation $\begin{gathered} x^{2}-6 x+8=0 \quad \text { or } y^{2}-2 y=0 \\ (x-4)(x-2) \quad(=0) \text { or } y(y-2) \quad(=0) \\ (4,0) \text { and }(2,2) \end{gathered}$	M1 A1 m1 A1 4	$4-x=x^{2}-7 x+12 \text { or } y=(4-y)^{2}-7(4-y)+12$ OR $x=(6 \pm \sqrt{ } 4) / 2$. FT from their quadratic CAO Need not be in this form, accept $\mathrm{x}=4, \mathrm{y}=0$ with $\mathrm{x}=2$, $\mathrm{y}=2$ y values must be given Accept unsupported correct responses for all 4 marks, or from trials if coordinates of both points are given and no others
15	(a) Intention to substitute $x=2$ and $x=5$ into $\mathrm{y}=-\mathrm{x}^{2}+7 \mathrm{x}-10$ Showing $\mathrm{y}=0$ for both values (b) $=-x^{3} / 3+7 x^{2} / 2-10 x$ Use of correct limits $5 \& 2$ in correct order and intention to subtract 4.5	M1 A1 M1 A2 m1 A1 7	OR substituting either value and showing $y=0$ OR attempt to factorise as a pair of brackets (x ..2)(x ..5) Do not accept $(-2)^{2}+7 \times 2-10$ and $(-5)^{2}+7 \times 2 \times-10$ Accept $-2^{2}+7 \times 2-10$ and $-5^{2}+7 \times 5-10$ OR factorised as $(-)(x-2)(x-5)$ or equivalent Intention to integrate (manipulated given, hence not using given or differentiated) A1 one term correct. CAO. Answer only gets no marks No marks for use of the trapezium rule

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

